热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【信号与系统】02傅里叶变换

1.傅里叶级数1.1特征函数上篇我们已经知道,LIT系统可以由单位冲激响应\(h(t)\)完全表征,且\(x(t)\)在系统的输出函数是\(x(t)*h(t)\)。这个结论是分析L
1. 傅里叶级数

1.1 特征函数

  上篇我们已经知道,LIT系统可以由单位冲激响应\(h(t)\)完全表征,且\(x(t)\)在系统的输出函数是\(x(t)*h(t)\)。这个结论是分析LIT系统的基础理论,甚至我们可以认为,LIT系统至此已经被完全解析了。但不要忘记,解析信号系统的目的,最终是为了分析信号或系统的特性、设计特定系统以处理信号。所以下一步就是要建立分析信号或系统的方法,并搞清系统对信号产生的根本性影响。单位冲激响应\(h(t)\)可视为系统的“固有信号”,所以接下来“信号”就是我们要面对的关键对象。

  信号千变万化,一套完备的“特征”,一般要求它们互相独立、又能完整地表征对象。对待实变量函数,一种典型的思路是建立完备的“特征函数系”,特征函数之间有一定独立性,而任何函数可以被“特征系数”唯一表征。另外LIT是一个线性系统,在线性问题中有一个普遍而有效的思路,它非常类似于线性变换的特征向量理论。就独立性而言,我们希望“特征函数”\(x(t)\)的系统输出有简单的格式\(K(x(t))\cdot x(t)\)。

  为了找到特征函数,我们得回到系统的表征函数\(\int h(\tau)x(t-\tau)\text{d}\tau\)中去。由其形式特点并联想到指数函数的特性,不难发现指数函数\(e^{st}\)满足式(1),以后我们把这样的函数称为LIT系统的特征函数。其中\(H(s)\)仅由系统和\(s\)决定,它是\(e^{st}\)经过系统后的“特征系数”,也被称为系统的特征值。值得提醒的是,\(s\)是在复数域的。复指数函数的一般形式是\(z^t\),但以\(e\)为低的复数表示更便于指数、导数等运算,故这里用\(e^s\)表示复数\(z\)。回顾复数的知识,\(s=\sigma+j\omega\),其中\(e^\sigma\geqslant 0\)是\(z\)的模,\(\omega\)是\(z\)的辐角(顺时针为正向)。

\[e^{st}\to H(s)e^{st},\,(s\in\Bbb{C}),\;\;H(s)=\int_{-\infty}^{\infty}h(\tau)e^{-s\tau}\,\text{d}\tau\tag{1}\]

1.2 三角基波

  特征函数有很多,下面就要挑选合适的做“特征函数系”。当\(\sigma\ne 0\)时,\(e^{st}\)的范数\(e^{\sigma t}\)是无界的,使用起来比较棘手。这里先设\(\sigma=0\),纯虚数指数函数(式(2))将构成我们需要的特征函数系(也叫基波)。函数值\(e^{j\omega t}\)随\(t\)在单位圆上做圆周运动,\(\omega\)是运动的角速度(弧度),运动的周期即为\(2\pi/|\omega|\)。教材里一般把\(\omega\)称为基波频率,而真实的频率其实是\(|\omega|/2\pi\),请注意区分。

\[e^{\text{j}\omega t}=\cos\omega t+j\sin\omega t,\,(\omega\in\Bbb{R});\;\;T=\dfrac{2\pi}{|\omega|}\tag{2}\]

技术图片

  \(e^{j\omega t}\)的实部、虚部都是正弦函数(这里不区分正余弦),正弦函数级数的性质已经被深入研究,用它们做基波是很方便的分析工具。傅里叶分析的早期研究对象,就是各种三角级数的收敛性。然而\(e^{j\omega t}\)才是三角函数更本质的形式,而且使用起来更加方便,所以今后我们都用复指数函数作为基波。复数域比实数域完备,所以复数运算更加方便自由,在纯数学上,不会因为一个概念“不够直观”而忽视它的价值。另外,系统的特征值\(H(j\omega)\)又被称为频率响应,它由冲激响应\(h(t)\)所决定,后面将会看到它们的密切关系。

1.3 傅里叶级数

  由于最早研究的函数分解就是三角函数级数,所以分解的对象也限定在了周期函数上。设函数\(x(t)\)的周期为\(T\),角速度为\(\omega_0\),傅里叶级数将它分解为基波频率为\(k\omega_0,(k\in\Bbb{Z})\)的纯虚指数函数的级数(式(3)左)。为了求得系数\(a_k\),可以利用\(\{e^{j\omega t}\}\)对积分运算的“正交性”,验证可有式(3)右成立。式(3)就是傅里叶级数(FS)的完整表达式了,一般记作\(x(t)\overset{FS}\leftrightarrow a_k\),其中\(a_k\)也称为FS的频谱系数

\[x(t)=\sum_{k\in\Bbb{Z}}a_ke^{jk\omega_0 t},\;a_k=\dfrac{1}{T}\int_Tx(\tau)e^{-jk\omega_0\tau}\,\text{d}\tau\tag{3}\]

  当然式(3)不是对所有周期函数都成立,狄利克雷条件给出了存在傅里叶级数的充分条件:(1)\(x(t)\)绝对可积;(2)周期内只有有限个起伏;(3)周期内只有有限个不连续点。这个条件包含了非常大范围的函数,因此它有着很广泛的实用价值。值得提醒的是,在不连续点\(t_0\)处,傅里叶级数收敛于\([x(t_0^-)+x(t_0^+)]/2\),但在个别点的误差并不影响FS成为有力的分析工具。从表达式还能知道,相近的两个函数的频谱系数也是相近的,所以频谱系数具有一定“稳定性”。分解级数和积分式不一定存在,但如果一个式子存在,另一个式子也必然是存在的,且都具有唯一性。用带入证明会遇到根本性的困难,我们只能到傅里叶分析里找答案。

  第一次面对FS的结论时,我们不禁想问:这个分解为什么会成立?它有没有更直观的解释?我想这样阐述(瞎说)FS的本质:函数就是一个随时间不断变化的量,这个“变化”可以从宏观到微观去依次去量化。就拿三角级数(4)来说,常数项\(a_0\)度量了\(x(t)\)相对0值的平均变化,去除\(a_0\)后\(a_1\)继续度量每半边的平均变化(左右相等但符号相反,使用三角函数可统一系数),然后再继续度量半边的两个半边,以此类推。显然中心对称的函数都可以做基波,但唯有三角函数简单且有很好的分析性质。

\[x(t)=a_0+a_1\sin\omega_0 t+a_2\sin2\omega_0 t\tag{4}\]

技术图片

2. 傅里叶变换

2.1 傅里叶变换

  傅里叶级数有着明显的局限性,最显然的就是它只适用于周期函数,而且如果把频谱系数作为函数的唯一表征,还必须限定在某个周期下。另一个缺陷不太明显但很重要,就是FS的频谱是不连续的,这限制了处理信号的范围。为了得到一般函数\(x(t)\)的频谱,先以\(t=0\)为中心截取长度为\(T\)的片段,然后展开成周期函数\(\tilde{x}(t)\)。对它做FS可以得到式(5),其中\(\{Ta_k\}\)是函数\(X(j\omega)\)上的等间隔点。

\[Ta_k=X(jk\omega_0),\;\;X(j\omega)=\int_Tx(t)e^{-j\omega t}\,\text{d}t\tag{5}\]

技术图片

  随着\(T\)逐渐增大直至无穷,\(\tilde{x}(t)\)变成\(x(t)\),\(\{Ta_k\}\)也越发密集直至完全变成函数\(X(j\omega)\)(这当然不是严格的数学证明,但也不失为一个好的直观阐述)。从离散到连续的变化中,\(\omega_0\)变成微分\(\text{d}\omega\),\(a_k\)则变成了\(\dfrac{1}{2\pi}X(j\omega)\,\text{d}\omega\)(因为\(T=2\pi/\omega\))。最终(连加变成积分)\(\tilde{x}(t)\)的FS也变成了\(x(t)\)的傅里叶变换(FT,式(6)),一般记作\(x(t)\overset{F}\leftrightarrow X(j\omega)\),其中\(X(j\omega)\)还是称为频谱系数

\[x(t)=\dfrac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)e^{j\omega t}\,\text{d}\omega;\;\;X(j\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,\text{d}t\tag{6}\]

  傅里叶变换也有对应的狄利克雷条件,只需把FS中的“周期内”改成“有限区间内”即可(以下把左式叫分解式、右式叫变换式)。狄利克雷条件是FT积分(处处)收敛的的充分非必要条件,在该条件下的分解式、变换式都是非奇异的。但在奇异函数的概念下,这些积分可以在更大的范围内“存在”,比如\(\delta(t)\)的FT是\(1\),但分解式显然不收敛。所以这里要强调,傅里叶变换的存在性是比收敛性更宽泛的概念,数学上已经证明:分解式、变换式是同时存在的,且互相具有唯一性。

  公式(6)说明了,函数和频谱系数是互相确定的,\(\{e^{j\omega t}\}\)是一个完备的特征函数系。频谱系数可以完全表征一个函数,它一般被称为函数的频域特征,相对而言函数自身则是时域特征。时域、频域是分析信号或系统的两个角度,它们在不同的场景下有各自的长处。对于系统的冲激函数\(h(t)\),从式(1)可知,频率响应函数\(H(j\omega)\)就是\(h(t)\)的傅里叶变换。也就是说,\(h(t),H(j\omega)\)分别是系统的时域、频域表征(后者也被称为系统函数),两者对系统分析都至关重要。

  狄利克雷条件是FT收敛的充分而非必要条件,鉴于FS和FT的关系,下面来讨论怎样把FS纳入FT中去。其实FT的频谱系数\(X(j\omega)\)是不同基波的“密度”函数,\(e^{j\omega t}\)在分解中的“份量”是\(\dfrac{1}{2\pi}X(j\omega)\,\text{d}\omega\)。反观FS的频谱系数\(a_k\),\(e^{jk\omega_0}\)提供的“份量”就是\(a_k\),它在FT中的“密度”应当是\(2\pi a_k\delta(\omega-k\omega_0)\)。综合便有了FS的FT格式(式(7)),它其实就是周期函数的傅里叶变换。

\[X(j\omega)=\sum_{k\in\Bbb{Z}}2\pi a_k\delta(\omega-k\omega_0)\tag{7}\]

2.2 拉普拉斯变换

  傅里叶变换的收敛性对函数有一定要求,比如函数一定要是有界的,这将限制对很多信号和系统的讨论。尤其在做系统的定性分析时,我们希望面对一个更大的系统空间进行系统设计。另一方面,LIT的特征函数\(e^{st}\)中的\(s\)可取遍整个复数域,而FT的基波\(e^{j\omega t}\)仅仅是\(s=\sigma+j\omega\)取虚轴而建立的函数系。为了研究用一般的\(e^{st}\)为基波的分解,可以考虑在FT两边同时乘上函数\(e^{\sigma t}\)(式(8)),其中\(\sigma\)是一个定值。

\[x(t)e^{\sigma t}=\dfrac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)e^{(\sigma+j\omega)t}\,\text{d}\omega\tag{8}\]

  式(8)其实就是\(x(t)e^{\sigma t}\)在函数系\(\{e^{(\sigma+j\omega)t}\}\)下的分解,由于\(\sigma\)是一个定值,\(s\)取在某条跟虚轴平行的直线上。一般地,式(9)被称为拉普拉斯变换(LT),并计作\(x(t)\overset{L}{\leftrightarrow}X(s)\),它和FT显然有关系式(10)。\(H(s)\)可以视为函数的\(s\)特征,它是对频域的扩充,在系统分析中也将起到更大的作用。还是得强调一下,虽然\(X(s)\)的定义域可以是整个复数域,但在某个具体的拉普拉斯变换中,\(s\)仅在一条虚轴平行线上(\(\sigma\)是定值)。课本中将逆变换写成了复数在曲线上的微分,我觉得对本课程没有意义。

\[x(t)=\dfrac{1}{2\pi}\int_{-\infty}^{\infty}X(s)e^{st}\,\text{d}\omega;\;\;X(s)=\int_{-\infty}^{\infty}x(t)e^{-st}\,\text{d}t\tag{9}\]

\[x(t)\overset{L}{\leftrightarrow}X(\sigma+j\omega)\;\;\Leftrightarrow\;\;x(t)e^{-\sigma t}\overset{F}{\leftrightarrow}X(j\omega)\tag{10}\]

  对于一个函数\(x(t)\)和固定的\(\sigma\),如果LT对所有的\(\omega\)都收敛,那么称\(x(t)\)的LT在\(\sigma\)处收敛。那些收敛的\(\sigma\)称为LT的收敛域(ROC),但要注意,收敛域外的某个具体\(s\)处,LT积分也可能收敛。课本上以\(s\)定义收敛域,其实并无本质区别,因为LT总是定义在整条虚轴平行线上的。如果\(x(t)\)有限持续(\(|t|>T\)后为0),积分总是收敛的,它的ROC是整个复平面。如果\(x(t)\)左边有限持续(右边信号),考察\(x(t)e^{-\sigma t}\)的绝对可积性,如果在\(\sigma_0\)处绝对可积,则易证在\(\sigma>\sigma_0\)上都可积,从而ROC为右半平面。同样道理,左边信号的ROC就是左半平面。而一般的双边信号,可将其分割为左右两部分,结合刚才的结论可知,ROC是一个带状区域。

  以上左/右平面、带状区域的边界是否收敛视情况而定,而且边界本身可能是不存在的(无穷大小),以下不再说明。冲激响应\(h(t)\)的拉普拉斯变换\(H(s)\)是系统的\(s\)域特征,它还是被称为系统函数,其ROC与系统性质有着一些关联。比如因果系统的冲击响应是一个右边信号,从而系统函数的ROC必定是右半平面。还有一个稳定系统的冲激响应是绝对可积的,从而它的傅里叶变换收敛,也就是说系统函数的ROC必须包含虚轴。

【信号与系统】02 - 傅里叶变换


推荐阅读
  • 本文介绍了C#中数据集DataSet对象的使用及相关方法详解,包括DataSet对象的概述、与数据关系对象的互联、Rows集合和Columns集合的组成,以及DataSet对象常用的方法之一——Merge方法的使用。通过本文的阅读,读者可以了解到DataSet对象在C#中的重要性和使用方法。 ... [详细]
  • 1,关于死锁的理解死锁,我们可以简单的理解为是两个线程同时使用同一资源,两个线程又得不到相应的资源而造成永无相互等待的情况。 2,模拟死锁背景介绍:我们创建一个朋友 ... [详细]
  • 后台获取视图对应的字符串
    1.帮助类后台获取视图对应的字符串publicclassViewHelper{将View输出为字符串(注:不会执行对应的ac ... [详细]
  • 《数据结构》学习笔记3——串匹配算法性能评估
    本文主要讨论串匹配算法的性能评估,包括模式匹配、字符种类数量、算法复杂度等内容。通过借助C++中的头文件和库,可以实现对串的匹配操作。其中蛮力算法的复杂度为O(m*n),通过随机取出长度为m的子串作为模式P,在文本T中进行匹配,统计平均复杂度。对于成功和失败的匹配分别进行测试,分析其平均复杂度。详情请参考相关学习资源。 ... [详细]
  • 本文介绍了lua语言中闭包的特性及其在模式匹配、日期处理、编译和模块化等方面的应用。lua中的闭包是严格遵循词法定界的第一类值,函数可以作为变量自由传递,也可以作为参数传递给其他函数。这些特性使得lua语言具有极大的灵活性,为程序开发带来了便利。 ... [详细]
  • 基于layUI的图片上传前预览功能的2种实现方式
    本文介绍了基于layUI的图片上传前预览功能的两种实现方式:一种是使用blob+FileReader,另一种是使用layUI自带的参数。通过选择文件后点击文件名,在页面中间弹窗内预览图片。其中,layUI自带的参数实现了图片预览功能。该功能依赖于layUI的上传模块,并使用了blob和FileReader来读取本地文件并获取图像的base64编码。点击文件名时会执行See()函数。摘要长度为169字。 ... [详细]
  • 动态规划算法的基本步骤及最长递增子序列问题详解
    本文详细介绍了动态规划算法的基本步骤,包括划分阶段、选择状态、决策和状态转移方程,并以最长递增子序列问题为例进行了详细解析。动态规划算法的有效性依赖于问题本身所具有的最优子结构性质和子问题重叠性质。通过将子问题的解保存在一个表中,在以后尽可能多地利用这些子问题的解,从而提高算法的效率。 ... [详细]
  • 高质量SQL书写的30条建议
    本文提供了30条关于优化SQL的建议,包括避免使用select *,使用具体字段,以及使用limit 1等。这些建议是基于实际开发经验总结出来的,旨在帮助读者优化SQL查询。 ... [详细]
  • 本文介绍了指针的概念以及在函数调用时使用指针作为参数的情况。指针存放的是变量的地址,通过指针可以修改指针所指的变量的值。然而,如果想要修改指针的指向,就需要使用指针的引用。文章还通过一个简单的示例代码解释了指针的引用的使用方法,并思考了在修改指针的指向后,取指针的输出结果。 ... [详细]
  • 在project.properties添加#Projecttarget.targetandroid-19android.library.reference.1..Sliding ... [详细]
  • 猜字母游戏
    猜字母游戏猜字母游戏——设计数据结构猜字母游戏——设计程序结构猜字母游戏——实现字母生成方法猜字母游戏——实现字母检测方法猜字母游戏——实现主方法1猜字母游戏——设计数据结构1.1 ... [详细]
  • CentOS 7部署KVM虚拟化环境之一架构介绍
    本文介绍了CentOS 7部署KVM虚拟化环境的架构,详细解释了虚拟化技术的概念和原理,包括全虚拟化和半虚拟化。同时介绍了虚拟机的概念和虚拟化软件的作用。 ... [详细]
  • 本文介绍了一种解析GRE报文长度的方法,通过分析GRE报文头中的标志位来计算报文长度。具体实现步骤包括获取GRE报文头指针、提取标志位、计算报文长度等。该方法可以帮助用户准确地获取GRE报文的长度信息。 ... [详细]
  • PDF内容编辑的两种小方法,你知道怎么操作吗?
    本文介绍了两种PDF内容编辑的方法:迅捷PDF编辑器和Adobe Acrobat DC。使用迅捷PDF编辑器,用户可以通过选择需要更改的文字内容并设置字体形式、大小和颜色来编辑PDF文件。而使用Adobe Acrobat DC,则可以通过在软件中点击编辑来编辑PDF文件。PDF文件的编辑可以帮助办公人员进行文件内容的修改和定制。 ... [详细]
  • CentOS 6.5安装VMware Tools及共享文件夹显示问题解决方法
    本文介绍了在CentOS 6.5上安装VMware Tools及解决共享文件夹显示问题的方法。包括清空CD/DVD使用的ISO镜像文件、创建挂载目录、改变光驱设备的读写权限等步骤。最后给出了拷贝解压VMware Tools的操作。 ... [详细]
author-avatar
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有