热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

高质量SQL书写的30条建议

本文提供了30条关于优化SQL的建议,包括避免使用select*,使用具体字段,以及使用limit1等。这些建议是基于实际开发经验总结出来的,旨在帮助读者优化SQL查询。

前言

本文将结合实例demo,阐述30条有关于优化SQL的建议,多数是实际开发中总结出来的,希望对大家有帮助。


1、查询SQL尽量不要使用select *,而是select具体字段。

反例子:

select * from employee;

正例子:

select id,name from employee;

理由:



  • 只取需要的字段,节省资源、减少网络开销。

  • select * 进行查询时,很可能就不会使用到覆盖索引了,就会造成回表查询。


2、如果知道查询结果只有一条或者只要最大/最小一条记录,建议用limit 1

假设现在有employee员工表,要找出一个名字叫jay的人.

CREATE TABLE`employee` (
`id`int(11) NOTNULL,
`name`varchar(255) DEFAULTNULL,
`age`int(11) DEFAULTNULL,
`date` datetime DEFAULTNULL,
`sex`int(1) DEFAULTNULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

反例:

select id,name from employee where name=‘jay‘

正例

select id,name from employee where name=‘jay‘ limit 1;

理由:



  • 加上limit 1后,只要找到了对应的一条记录,就不会继续向下扫描了,效率将会大大提高。

  • 当然,如果name是唯一索引的话,是不必要加上limit 1了,因为limit的存在主要就是为了防止全表扫描,从而提高性能,
    如果一个语句本身可以预知不用全表扫描,有没有limit,性能的差别并不大。


3、应尽量避免在where子句中使用or来连接条件

新建一个user表,它有一个普通索引userId,表结构如下:

CREATE TABLE`user` (
`id`int(11) NOTNULL AUTO_INCREMENT,
`userId`int(11) NOTNULL,
`age`int(11) NOTNULL,
`name`varchar(255) NOTNULL,
PRIMARY KEY (`id`),
KEY`idx_userId` (`userId`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

假设现在需要查询userid为1或者年龄为18岁的用户,很容易有以下sql

反例:

select * from user where userid = 1 or age = 18

正例:

//使用union all
select * from user where userid = 1
unionall
select * from user where age = 18
//或者分开两条sql写:
select * from user where userid = 1
select * from user where age = 18

理由:



  • 使用or可能会使索引失效,从而全表扫描。


对于or+没有索引的age这种情况,假设它走了userId的索引,但是走到age查询条件时,它还得全表扫描,也就是需要三步过程:全表扫描+索引扫描+合并
如果它一开始就走全表扫描,直接一遍扫描就完事。mysql是有优化器的,处于效率与成本考虑,遇到or条件,索引可能失效,看起来也合情合理。



4、优化limit分页

我们日常做分页需求时,一般会用 limit 实现,但是当偏移量特别大的时候,查询效率就变得低下。

反例:

select id,name,age from employee limit 10000,10

正例:

//方案一 :返回上次查询的最大记录(偏移量)
select id,name from employee where id > 10000 limit 10
//方案二:orderby + 索引
select id,name from employee order by id limit 10000,10
//方案三:在业务允许的情况下限制页数:

理由:



  • 当偏移量最大的时候,查询效率就会越低,因为Mysql并非是跳过偏移量直接去取后面的数据,而是先把偏移量+要取的条数,然后再把前面偏移量这一段的数据抛弃掉再返回的。



  • 如果使用优化方案一,返回上次最大查询记录(偏移量),这样可以跳过偏移量,效率提升不少。



  • 方案二使用order by+索引,也是可以提高查询效率的。



  • 方案三的话,建议跟业务讨论,有没有必要查这么后的分页啦。因为绝大多数用户都不会往后翻太多页。




5、优化你的like语句

日常开发中,如果用到模糊关键字查询,很容易想到like,但是like很可能让你的索引失效。

反例:

select userId,name from user where userId like‘%123‘;

正例:

select userId,name from user where userId like‘123%‘;

理由:



  • 把%放前面,并不走索引,如下:
    技术分享图片

  • 把% 放关键字后面,还是会走索引的。如下:
    技术分享图片


6、使用where条件限定要查询的数据,避免返回多余的行

假设业务场景是这样:查询某个用户是否是会员。曾经看过老的实现代码是这样。。。

反例:

List userIds = sqlMap.queryList("select userId fromuserwhere isVip=1");
boolean isVip = userIds.contains(userId);

正例:

Long userId = sqlMap.queryObject("select userId fromuserwhere userId=‘userId‘and isVip=‘1‘")
boolean isVip = userId!=null;

理由:



  • 需要什么数据,就去查什么数据,避免返回不必要的数据,节省开销。


7、尽量避免在索引列上使用mysql的内置函数

业务需求:查询最近七天内登陆过的用户(假设loginTime加了索引)

反例:

select userId,loginTime from loginuser where Date_ADD(loginTime,Interval 7 DAY) >= now();

正例:

explain select userId,loginTime from loginuser where loginTime >= Date_ADD(NOW(),INTERVAL - 7 DAY);

理由:



  • 索引列上使用mysql的内置函数,索引失效

技术分享图片



  • 如果索引列不加内置函数,索引还是会走的。

技术分享图片


8、应尽量避免在 where 子句中对字段进行表达式操作,这将导致系统放弃使用索引而进行全表扫

反例:

select * from user where age - 1 = 10;

正例:

select * from user where age = 11;

理由:



  • 虽然age加了索引,但是因为对它进行运算,索引直接迷路了。。。
    技术分享图片


9、Inner join 、left join、right join,优先使用Inner join,如果是left join,左边表结果尽量小




  • Inner join 内连接,在两张表进行连接查询时,只保留两张表中完全匹配的结果集

  • left join 在两张表进行连接查询时,会返回左表所有的行,即使在右表中没有匹配的记录。

  • right join 在两张表进行连接查询时,会返回右表所有的行,即使在左表中没有匹配的记录。


都满足SQL需求的前提下,推荐优先使用Inner join(内连接),如果要使用left join,左边表数据结果尽量小,如果有条件的尽量放到左边处理。

反例:

select * from tab1 t1 left join tab2 t2 on t1.size = t2.size where t1.id > 2;

正例:

select * from (select * from tab1 where id >2) t1 left join tab2 t2 on t1.size = t2.size;

理由:



  • 如果inner join是等值连接,或许返回的行数比较少,所以性能相对会好一点。

  • 同理,使用了左连接,左边表数据结果尽量小,条件尽量放到左边处理,意味着返回的行数可能比较少。


10、应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。

反例:

select age,name from user where age <> 18;

正例:

//可以考虑分开两条sql写
select age,name from user where age <18;
select age,name from user where age > 18;

理由:



  • 使用 != 和 <> 很可能会让索引失效

技术分享图片


11、使用联合索引时,注意索引列的顺序,一般遵循最左匹配原则。

表结构:(有一个联合索引idx_userid_age,userId在前,age在后)

CREATE TABLE `user` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`userId` int(11) NOT NULL,
`age` int(11) DEFAULT NULL,
`name` varchar(255) NOT NULL,
PRIMARY KEY (`id`),
KEY `idx_userid_age` (`userId`,`age`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8;

反例:

select * from user where age = 10;

技术分享图片

正例:

//符合最左匹配原则
select * from user where userid = 10 and age = 10;
//符合最左匹配原则
select * from user where userid =10;

技术分享图片

技术分享图片

理由:



  • 当我们创建一个联合索引的时候,如(k1,k2,k3),相当于创建了(k1)、(k1,k2)和(k1,k2,k3)三个索引,这就是最左匹配原则。

  • 联合索引不满足最左原则,索引一般会失效,但是这个还跟Mysql优化器有关的。


12、对查询进行优化,应考虑在 where 及 order by 涉及的列上建立索引,尽量避免全表扫描。

反例:

select * from user where address =‘深圳‘ order by age;

技术分享图片

正例:

添加索引
alter table user add index idx_address_age (address,age)

技术分享图片


13、如果插入数据过多,考虑批量插入。

反例:

for(User u :list){
INSERT into user(name,age) values(#name#,#age#)
}

正例:

//一次500批量插入,分批进行
insert into user(name,age) values

(#{item.name},#{item.age})

理由:



  • 批量插入性能好,更加省时间


打个比喻:假如你需要搬一万块砖到楼顶,你有一个电梯,电梯一次可以放适量的砖(最多放500),你可以选择一次运送一块砖,也可以一次运送500,你觉得哪个时间消耗大?



14、在适当的时候,使用覆盖索引。

覆盖索引能够使得你的SQL语句不需要回表,仅仅访问索引就能够得到所有需要的数据,大大提高了查询效率。

反例:

// like模糊查询,不走索引了
select * from user where userid like ‘%123%‘

技术分享图片

正例:

//id为主键,那么为普通索引,即覆盖索引登场了。
select id,name from user where userid like ‘%123%‘;

技术分享图片


15、慎用distinct关键字

distinct 关键字一般用来过滤重复记录,以返回不重复的记录。在查询一个字段或者很少字段的情况下使用时,给查询带来优化效果。但是在字段很多的时候使用,却会大大降低查询效率。

反例:

SELECT DISTINCT * from user;

正例:

select DISTINCT name from user;

理由:



  • 带distinct的语句cpu时间和占用时间都高于不带distinct的语句。因为当查询很多字段时,如果使用distinct,数据库引擎就会对数据进行比较,过滤掉重复数据,然而这个比较,过滤的过程会占用系统资源,cpu时间。


16、删除冗余和重复索引

反例:

KEY `idx_userId` (`userId`)
KEY `idx_userId_age` (`userId`,`age`)

正例:

//删除userId索引,因为组合索引(A,B)相当于创建了(A)和(A,B)索引
KEY `idx_userId_age` (`userId`,`age`)

理由:



  • 重复的索引需要维护,并且优化器在优化查询的时候也需要逐个地进行考虑,这会影响性能的。


17、如果数据量较大,优化你的修改/删除语句。

避免同时修改或删除过多数据,因为会造成cpu利用率过高,从而影响别人对数据库的访问。

反例:

//一次删除10万或者100万+?
delete from user where id <100000;
//或者采用单一循环操作,效率低,时间漫长
for(User user:list){
delete from user;
}

正例:

//分批进行删除,如每次500
delete user where id <500
delete product where id >= 500 and id <1000;

理由:



  • 一次性删除太多数据,可能会有lock wait timeout exceed的错误,所以建议分批操作。


18、where子句中考虑使用默认值代替null。

反例:

select * from user where age is not null;

技术分享图片

正例:

//设置0为默认值
select * from user where age > 0;

技术分享图片

理由:



  • 并不是说使用了is null 或者 is not null 就会不走索引了,这个跟mysql版本以及查询成本都有关。


如果mysql优化器发现,走索引比不走索引成本还要高,肯定会放弃索引,这些条件!=,is null,is not null经常被认为让索引失效,其实是因为一般情况下,查询的成本高,优化器自动放弃的。




  • 如果把null值,换成默认值,很多时候让走索引成为可能,同时,表达意思会相对清晰一点。


19、不要有超过5个以上的表连接



  • 连表越多,编译的时间和开销也就越大。

  • 把连接表拆开成较小的几个执行,可读性更高。

  • 如果一定需要连接很多表才能得到数据,那么意味着糟糕的设计了。


20、exist & in的合理利用

假设表A表示某企业的员工表,表B表示部门表,查询所有部门的所有员工,很容易有以下SQL:

select * from A where deptId in (select deptId from B);

这样写等价于:


先查询部门表B

select deptId from B

再由部门deptId,查询A的员工

select * from A where A.deptId = B.deptId


可以抽象成这样的一个循环:

List<> resultSet ;
for(int i=0;i for(int j=0;j if(A[i].id==B[j].id) {
resultSet.add(A[i]);
break;
}
}
}

显然,除了使用in,我们也可以用exists实现一样的查询功能,如下:

select * from A where exists (select 1 from B where A.deptId = B.deptId);

因为exists查询的理解就是,先执行主查询,获得数据后,再放到子查询中做条件验证,根据验证结果(true或者false),来决定主查询的数据结果是否得意保留。

那么,这样写就等价于:


select * from A,先从A表做循环

select * from B where A.deptId = B.deptId,再从B表做循环.


同理,可以抽象成这样一个循环:

List<> resultSet ;
for(int i=0;i for(int j=0;j if(A[i].deptId==B[j].deptId) {
resultSet.add(A[i]);
break;
}
}
}

数据库最费劲的就是跟程序链接释放。假设链接了两次,每次做上百万次的数据集查询,查完就走,这样就只做了两次;相反建立了上百万次链接,申请链接释放反复重复,这样系统就受不了了。即mysql优化原则,就是小表驱动大表,小的数据集驱动大的数据集,从而让性能更优。

因此,我们要选择最外层循环小的,也就是,如果B的数据量小于A,适合使用in,如果B的数据量大于A,即适合选择exist


21、尽量用 union all 替换 union

如果检索结果中不会有重复的记录,推荐union all 替换 union。

反例:

select * from user where userid = 1
union
select * from user where age = 10

正例:

select * from user where userid = 1
union all
select * from user where age = 10

理由:



  • 如果使用union,不管检索结果有没有重复,都会尝试进行合并,然后在输出最终结果前进行排序。如果已知检索结果没有重复记录,使用union all 代替union,这样会提高效率。


22、索引不宜太多,一般5个以内。



  • 索引并不是越多越好,索引虽然提高了查询的效率,但是也降低了插入和更新的效率。

  • insert或update时有可能会重建索引,所以建索引需要慎重考虑,视具体情况来定。

  • 一个表的索引数最好不要超过5个,若太多需要考虑一些索引是否没有存在的必要。


23、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型

反例:

king_id` varchar(20) NOT NULL COMMENT ‘守护者Id‘

正例:

`king_id` int(11) NOT NULL COMMENT ‘守护者Id‘`

理由:



  • 相对于数字型字段,字符型会降低查询和连接的性能,并会增加存储开销。


24、索引不适合建在有大量重复数据的字段上,如性别这类型数据库字段。

因为SQL优化器是根据表中数据量来进行查询优化的,如果索引列有大量重复数据,Mysql查询优化器推算发现不走索引的成本更低,很可能就放弃索引了。


25、尽量避免向客户端返回过多数据量。

假设业务需求是,用户请求查看自己最近一年观看过的直播数据。

反例:

//一次性查询所有数据回来
select * from LivingInfo where watchId =useId and watchTime >= Date_sub(now(),Interval 1 Y)

正例:

//分页查询
select * from LivingInfo where watchId =useId and watchTime>= Date_sub(now(),Interval 1 Y) limit offset,pageSize
//如果是前端分页,可以先查询前两百条记录,因为一般用户应该也不会往下翻太多页,
select * from LivingInfo where watchId =useId and watchTime>= Date_sub(now(),Interval 1 Y) limit 200;

26、当在SQL语句中连接多个表时,请使用表的别名,并把别名前缀于每一列上,这样语义更加清晰。

反例:

select * from A inner
join B on A.deptId = B.deptId;

正例:

select memeber.name,deptment.deptName from A member inner
join B deptment on member.deptId = deptment.deptId;

27、尽可能使用varchar/nvarchar 代替 char/nchar。

反例:

`deptName` char(100) DEFAULT NULL COMMENT ‘部门名称‘

正例:

`deptName` varchar(100) DEFAULT NULL COMMENT ‘部门名称‘

理由:



  • 因为首先变长字段存储空间小,可以节省存储空间。

  • 其次对于查询来说,在一个相对较小的字段内搜索,效率更高。


28、为了提高group by 语句的效率,可以在执行到该语句前,把不需要的记录过滤掉。

反例:

select job,avg(salary) from employee group by job having job =‘president‘ or job = ‘managent‘

正例:

select job,avg(salary) from employee where job =‘president‘
or job = ‘managent‘ group by job;

29、若字段类型是字符串,使用where时一定用引号括起来,否则索引失效

反例:

select * from user where userid = 123;

技术分享图片

正例:

select * from user where userid = ‘123‘;

技术分享图片

理由:



  • 为什么第一条语句未加单引号就不走索引了呢?这是因为不加单引号时,是字符串跟数字的比较,它们类型不匹配,MySQL会做隐式的类型转换,把它们转换为浮点数再做比较。


30、使用explain 分析你SQL的计划

日常开发写SQL的时候,尽量养成一个习惯吧。用explain分析一下你写的SQL,尤其是走不走索引这一块。

explain select * from user where userid = 10086 or age =18;

技术分享图片


推荐阅读
  • ALTERTABLE通过更改、添加、除去列和约束,或者通过启用或禁用约束和触发器来更改表的定义。语法ALTERTABLEtable{[ALTERCOLUMNcolu ... [详细]
  • 本文介绍了数据库的存储结构及其重要性,强调了关系数据库范例中将逻辑存储与物理存储分开的必要性。通过逻辑结构和物理结构的分离,可以实现对物理存储的重新组织和数据库的迁移,而应用程序不会察觉到任何更改。文章还展示了Oracle数据库的逻辑结构和物理结构,并介绍了表空间的概念和作用。 ... [详细]
  • MyBatis多表查询与动态SQL使用
    本文介绍了MyBatis多表查询与动态SQL的使用方法,包括一对一查询和一对多查询。同时还介绍了动态SQL的使用,包括if标签、trim标签、where标签、set标签和foreach标签的用法。文章还提供了相关的配置信息和示例代码。 ... [详细]
  • 本文介绍了一种轻巧方便的工具——集算器,通过使用集算器可以将文本日志变成结构化数据,然后可以使用SQL式查询。集算器利用集算语言的优点,将日志内容结构化为数据表结构,SPL支持直接对结构化的文件进行SQL查询,不再需要安装配置第三方数据库软件。本文还详细介绍了具体的实施过程。 ... [详细]
  • 本文讨论了一个关于cuowu类的问题,作者在使用cuowu类时遇到了错误提示和使用AdjustmentListener的问题。文章提供了16个解决方案,并给出了两个可能导致错误的原因。 ... [详细]
  • 本文详细介绍了Linux中进程控制块PCBtask_struct结构体的结构和作用,包括进程状态、进程号、待处理信号、进程地址空间、调度标志、锁深度、基本时间片、调度策略以及内存管理信息等方面的内容。阅读本文可以更加深入地了解Linux进程管理的原理和机制。 ... [详细]
  • 图解redis的持久化存储机制RDB和AOF的原理和优缺点
    本文通过图解的方式介绍了redis的持久化存储机制RDB和AOF的原理和优缺点。RDB是将redis内存中的数据保存为快照文件,恢复速度较快但不支持拉链式快照。AOF是将操作日志保存到磁盘,实时存储数据但恢复速度较慢。文章详细分析了两种机制的优缺点,帮助读者更好地理解redis的持久化存储策略。 ... [详细]
  • 1,关于死锁的理解死锁,我们可以简单的理解为是两个线程同时使用同一资源,两个线程又得不到相应的资源而造成永无相互等待的情况。 2,模拟死锁背景介绍:我们创建一个朋友 ... [详细]
  • 本文介绍了一个在线急等问题解决方法,即如何统计数据库中某个字段下的所有数据,并将结果显示在文本框里。作者提到了自己是一个菜鸟,希望能够得到帮助。作者使用的是ACCESS数据库,并且给出了一个例子,希望得到的结果是560。作者还提到自己已经尝试了使用"select sum(字段2) from 表名"的语句,得到的结果是650,但不知道如何得到560。希望能够得到解决方案。 ... [详细]
  • 本文详细介绍了Spring的JdbcTemplate的使用方法,包括执行存储过程、存储函数的call()方法,执行任何SQL语句的execute()方法,单个更新和批量更新的update()和batchUpdate()方法,以及单查和列表查询的query()和queryForXXX()方法。提供了经过测试的API供使用。 ... [详细]
  • 本文讨论了在数据库打开和关闭状态下,重新命名或移动数据文件和日志文件的情况。针对性能和维护原因,需要将数据库文件移动到不同的磁盘上或重新分配到新的磁盘上的情况,以及在操作系统级别移动或重命名数据文件但未在数据库层进行重命名导致报错的情况。通过三个方面进行讨论。 ... [详细]
  • 本文讨论了在openwrt-17.01版本中,mt7628设备上初始化启动时eth0的mac地址总是随机生成的问题。每次随机生成的eth0的mac地址都会写到/sys/class/net/eth0/address目录下,而openwrt-17.01原版的SDK会根据随机生成的eth0的mac地址再生成eth0.1、eth0.2等,生成后的mac地址会保存在/etc/config/network下。 ... [详细]
  • NotSupportedException无法将类型“System.DateTime”强制转换为类型“System.Object”
    本文介绍了在使用LINQ to Entities时出现的NotSupportedException异常,该异常是由于无法将类型“System.DateTime”强制转换为类型“System.Object”所导致的。同时还介绍了相关的错误信息和解决方法。 ... [详细]
  • 如何更改电脑系统的自动校时服务器地址?
    本文介绍了如何通过注册表编辑器更改电脑系统的自动校时服务器地址。通过修改注册表中的数值数据或新建字符串数值的方式,可以将默认的时钟同步服务器地址更改为自己所需要的域名或IP地址。详细步骤包括双击时间区域,点击internet时间,勾选自动校正域名设置定时等操作。 ... [详细]
  • 获取时间的函数js代码,js获取时区代码
    本文目录一览:1、js获取服务器时间(动态)2 ... [详细]
author-avatar
嘻嘻2502891803
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有