热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

[转]贝叶斯推断及其互联网应用

贝叶斯推断及其互联网应用(一):定理简介作者:阮一峰日期:2011年8月25日一年前的这个时候,



贝叶斯推断及其互联网应用(一):定理简介




作者: 阮一峰

日期: 2011年8月25日


一年前的这个时候,我正在翻译Paul Graham的《黑客与画家》。

那本书的第八章,写了一个非常具体的技术问题----如何使用贝叶斯推断过滤垃圾邮件(英文版)。

我没完全看懂那一章。当时是硬着头皮,按照字面意思把它译出来的。虽然译文质量还可以,但是心里很不舒服,下决心一定要搞懂它。

一年过去了,我读了一些概率论文献,逐渐发现贝叶斯推断并不难。原理的部分相当容易理解,不需要用到高等数学。

下面就是我的学习笔记。需要声明的是,我并不是这方面的专家,数学其实是我的弱项。欢迎大家提出宝贵意见,让我们共同学习和提高。

=====================================

贝叶斯推断及其互联网应用

作者:阮一峰

一、什么是贝叶斯推断

贝叶斯推断(Bayesian inference)是一种统计学方法,用来估计统计量的某种性质。

它是贝叶斯定理(Bayes' theorem)的应用。英国数学家托马斯·贝叶斯(Thomas Bayes)在1763年发表的一篇论文中,首先提出了这个定理。

贝叶斯推断与其他统计学推断方法截然不同。它建立在主观判断的基础上,也就是说,你可以不需要客观证据,先估计一个值,然后根据实际结果不断修正。正是因为它的主观性太强,曾经遭到许多统计学家的诟病。

贝叶斯推断需要大量的计算,因此历史上很长一段时间,无法得到广泛应用。只有计算机诞生以后,它才获得真正的重视。人们发现,许多统计量是无法事先进行客观判断的,而互联网时代出现的大型数据集,再加上高速运算能力,为验证这些统计量提供了方便,也为应用贝叶斯推断创造了条件,它的威力正在日益显现。

二、贝叶斯定理

要理解贝叶斯推断,必须先理解贝叶斯定理。后者实际上就是计算"条件概率"的公式。

所谓"条件概率"(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。

根据文氏图,可以很清楚地看到在事件B发生的情况下,事件A发生的概率就是P(A∩B)除以P(B)。

上图中,红色部分是事件A,绿色部分是事件A',它们共同构成了样本空间S。

在这种情况下,事件B可以划分成两个部分。

第一个例子。两个一模一样的碗,一号碗有30颗水果糖和10颗巧克力糖,二号碗有水果糖和巧克力糖各20颗。现在随机选择一个碗,从中摸出一颗糖,发现是水果糖。请问这颗水果糖来自一号碗的概率有多大?

我们假定,H1表示一号碗,H2表示二号碗。由于这两个碗是一样的,所以P(H1)=P(H2),也就是说,在取出水果糖之前,这两个碗被选中的概率相同。因此,P(H1)=0.5,我们把这个概率就叫做"先验概率",即没有做实验之前,来自一号碗的概率是0.5。

再假定,E表示水果糖,所以问题就变成了在已知E的情况下,来自一号碗的概率有多大,即求P(H1|E)。我们把这个概率叫做"后验概率",即在E事件发生之后,对P(H1)的修正。

根据条件概率公式,得到

已知某种疾病的发病率是0.001,即1000人中会有1个人得病。现有一种试剂可以检验患者是否得病,它的准确率是0.99,即在患者确实得病的情况下,它有99%的可能呈现阳性。它的误报率是5%,即在患者没有得病的情况下,它有5%的可能呈现阳性。现有一个病人的检验结果为阳性,请问他确实得病的可能性有多大?

假定A事件表示得病,那么P(A)为0.001。这就是"先验概率",即没有做试验之前,我们预计的发病率。再假定B事件表示阳性,那么要计算的就是P(A|B)。这就是"后验概率",即做了试验以后,对发病率的估计。

根据条件概率公式,

(接上文)

七、什么是贝叶斯过滤器?

垃圾邮件是一种令人头痛的顽症,困扰着所有的互联网用户。

正确识别垃圾邮件的技术难度非常大。传统的垃圾邮件过滤方法,主要有"关键词法"和"校验码法"等。前者的过滤依据是特定的词语;后者则是计算邮件文本的校验码,再与已知的垃圾邮件进行对比。它们的识别效果都不理想,而且很容易规避。

2002年,Paul Graham提出使用"贝叶斯推断"过滤垃圾邮件。他说,这样做的效果,好得不可思议。1000封垃圾邮件可以过滤掉995封,且没有一个误判。

另外,这种过滤器还具有自我学习的功能,会根据新收到的邮件,不断调整。收到的垃圾邮件越多,它的准确率就越高。

八、建立历史资料库

贝叶斯过滤器是一种统计学过滤器,建立在已有的统计结果之上。所以,我们必须预先提供两组已经识别好的邮件,一组是正常邮件,另一组是垃圾邮件。

我们用这两组邮件,对过滤器进行"训练"。这两组邮件的规模越大,训练效果就越好。Paul Graham使用的邮件规模,是正常邮件和垃圾邮件各4000封。

"训练"过程很简单。首先,解析所有邮件,提取每一个词。然后,计算每个词语在正常邮件和垃圾邮件中的出现频率。比如,我们假定"sex"这个词,在4000封垃圾邮件中,有200封包含这个词,那么它的出现频率就是5%;而在4000封正常邮件中,只有2封包含这个词,那么出现频率就是0.05%。(【注释】如果某个词只出现在垃圾邮件中,Paul Graham就假定,它在正常邮件的出现频率是1%,反之亦然。这样做是为了避免概率为0。随着邮件数量的增加,计算结果会自动调整。)

有了这个初步的统计结果,过滤器就可以投入使用了。

九、贝叶斯过滤器的使用过程

现在,我们收到了一封新邮件。在未经统计分析之前,我们假定它是垃圾邮件的概率为50%。(【注释】有研究表明,用户收到的电子邮件中,80%是垃圾邮件。但是,这里仍然假定垃圾邮件的"先验概率"为50%。)

我们用S表示垃圾邮件(spam),H表示正常邮件(healthy)。因此,P(S)和P(H)的先验概率,都是50%。

其中,W1、W2和垃圾邮件的概率分别如下:

如果假定所有事件都是独立事件(【注释】严格地说,这个假定不成立,但是这里可以忽略),那么就可以计算P(E1)和P(E2):

Google告诉你,这个词是不存在的,正确的拼法是separate。

这就叫做"拼写检查"(spelling corrector)。有好几种方法可以实现这个功能,Google使用的是基于贝叶斯推断的统计学方法。这种方法的特点就是快,很短的时间内处理大量文本,并且有很高的精确度(90%以上)。Google的研发总监Peter Norvig,写过一篇著名的文章,解释这种方法的原理。

下面我们就来看看,怎么利用贝叶斯推断,实现"拼写检查"。其实很简单,一小段代码就够了。

一、原理

用户输入了一个单词。这时分成两种情况:拼写正确,或者拼写不正确。我们把拼写正确的情况记做c(代表correct),拼写错误的情况记做w(代表wrong)。

所谓"拼写检查",就是在发生w的情况下,试图推断出c。从概率论的角度看,就是已知w,然后在若干个备选方案中,找出可能性最大的那个c,也就是求下面这个式子的最大值。

  P(c|w)

根据贝叶斯定理:

  P(c|w) = P(w|c) * P(c) / P(w)

对于所有备选的c来说,对应的都是同一个w,所以它们的P(w)是相同的,因此我们求的其实是

  P(w|c) * P(c)

的最大值。

P(c)的含义是,某个正确的词的出现"概率",它可以用"频率"代替。如果我们有一个足够大的文本库,那么这个文本库中每个单词的出现频率,就相当于它的发生概率。某个词的出现频率越高,P(c)就越大。

P(w|c)的含义是,在试图拼写c的情况下,出现拼写错误w的概率。这需要统计数据的支持,但是为了简化问题,我们假设两个单词在字形上越接近,就有越可能拼错,P(w|C)就越大。举例来说,相差一个字母的拼法,就比相差两个字母的拼法,发生概率更高。你想拼写单词hello,那么错误拼成hallo(相差一个字母)的可能性,就比拼成haallo高(相差两个字母)。

所以,我们只要找到与输入单词在字形上最相近的那些词,再在其中挑出出现频率最高的一个,就能实现 P(w|c) * P(c) 的最大值。

二、算法

最简单的算法,只需要四步就够了。

第一步,建立一个足够大的文本库。

网上有一些免费来源,比如古登堡计划、Wiktionary、英国国家语料库等等。

第二步,取出文本库的每一个单词,统计它们的出现频率。

第三步,根据用户输入的单词,得到其所有可能的拼写相近的形式。

所谓"拼写相近",指的是两个单词之间的"编辑距离"(edit distance)不超过2。也就是说,两个词只相差1到2个字母,只通过----删除、交换、更改和插入----这四种操作中的一种,就可以让一个词变成另一个词。

第四步,比较所有拼写相近的词在文本库的出现频率。频率最高的那个词,就是正确的拼法。

根据Peter Norvig的验证,这种算法的精确度大约为60%-70%(10个拼写错误能够检查出6个。)虽然不令人满意,但是能够接受。毕竟它足够简单,计算速度极快。(本文的最后部分,将详细讨论这种算法的缺陷在哪里。)

三、代码

我们使用Python语言,实现上一节的算法。

第一步,把网上下载的文本库保存为big.txt文件。这步不需要编程。

第二步,加载Python的正则语言模块(re)和collections模块,后面要用到。

  import re, collections

第三步,定义words()函数,用来取出文本库的每一个词。

  def words(text): return re.findall('[a-z]+', text.lower())

lower()将所有词都转成小写,避免因为大小写不同,而被算作两个词。

第四步,定义一个train()函数,用来建立一个"字典"结构。文本库的每一个词,都是这个"字典"的键;它们所对应的值,就是这个词在文本库的出现频率。

  def train(features):

    model = collections.defaultdict(lambda: 1)

    for f in features:

      model[f] += 1

    return model

collections.defaultdict(lambda: 1)的意思是,每一个词的默认出现频率为1。这是针对那些没有出现在文本库的词。如果一个词没有在文本库出现,我们并不能认定它就是一个不存在的词,因此将每个词出现的默认频率设为1。以后每出现一次,频率就增加1。

第五步,使用words()和train()函数,生成上一步的"词频字典",放入变量NWORDS。

  NWORDS = train(words(file('big.txt').read()))

第六步,定义edits1()函数,用来生成所有与输入参数word的"编辑距离"为1的词。

  alphabet = 'abcdefghijklmnopqrstuvwxyz'

  def edits1(word):

    splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]

    deletes = [a + b[1:] for a, b in splits if b]

    transposes = [a + b[1] + b[0] + b[2:] for a, b in splits if len(b)>1]

    replaces = [a + c + b[1:] for a, b in splits for c in alphabet if b]

    inserts = [a + c + b for a, b in splits for c in alphabet]

    return set(deletes + transposes + replaces + inserts)

edit1()函数中的几个变量的含义如下:

  (1)splits:将word依次按照每一位分割成前后两半。比如,'abc'会被分割成 [('', 'abc'), ('a', 'bc'), ('ab', 'c'), ('abc', '')] 。

  (2)beletes:依次删除word的每一位后、所形成的所有新词。比如,'abc'对应的deletes就是 ['bc', 'ac', 'ab'] 。

  (3)transposes:依次交换word的邻近两位,所形成的所有新词。比如,'abc'对应的transposes就是 ['bac', 'acb'] 。

  (4)replaces:将word的每一位依次替换成其他25个字母,所形成的所有新词。比如,'abc'对应的replaces就是 ['abc', 'bbc', 'cbc', ... , 'abx', ' aby', 'abz' ] ,一共包含78个词(26 × 3)。

  (5)inserts:在word的邻近两位之间依次插入一个字母,所形成的所有新词。比如,'abc' 对应的inserts就是['aabc', 'babc', 'cabc', ..., 'abcx', 'abcy', 'abcz'],一共包含104个词(26 × 4)。

最后,edit1()返回deletes、transposes、replaces、inserts的合集,这就是与word"编辑距离"等于1的所有词。对于一个n位的词,会返回54n+25个词。

第七步,定义edit2()函数,用来生成所有与word的"编辑距离"为2的词语。

  def edits2(word):

    return set(e2 for e1 in edits1(word) for e2 in edits1(e1))

但是这样的话,会返回一个 (54n+25) * (54n+25) 的数组,实在是太大了。因此,我们将edit2()改为known_edits2()函数,将返回的词限定为在文本库中出现过的词。

  def known_edits2(word):

    return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in NWORDS)

第八步,定义correct()函数,用来从所有备选的词中,选出用户最可能想要拼写的词。

  def known(words): return set(w for w in words if w in NWORDS)

  def correct(word):

    candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word]

    return max(candidates, key=NWORDS.get)

我们采用的规则为:

  (1)如果word是文本库现有的词,说明该词拼写正确,直接返回这个词;

  (2)如果word不是现有的词,则返回"编辑距离"为1的词之中,在文本库出现频率最高的那个词;

  (3)如果"编辑距离"为1的词,都不是文本库现有的词,则返回"编辑距离"为2的词中,出现频率最高的那个词;

  (4)如果上述三条规则,都无法得到结果,则直接返回word。

至此,代码全部完成,合起来一共21行。

  import re, collections

  def words(text): return re.findall('[a-z]+', text.lower())

  def train(features):

    model = collections.defaultdict(lambda: 1)

    for f in features:

      model[f] += 1

    return model

  NWORDS = train(words(file('big.txt').read()))

  alphabet = 'abcdefghijklmnopqrstuvwxyz'

  def edits1(word):

    splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]

    deletes = [a + b[1:] for a, b in splits if b]

    transposes = [a + b[1] + b[0] + b[2:] for a, b in splits if len(b)>1]

    replaces = [a + c + b[1:] for a, b in splits for c in alphabet if b]

    inserts = [a + c + b for a, b in splits for c in alphabet]

    return set(deletes + transposes + replaces + inserts)

  def known_edits2(word):

    return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in NWORDS)

  def known(words): return set(w for w in words if w in NWORDS)

  def correct(word):

    candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word]

    return max(candidates, key=NWORDS.get)

使用方法如下:

  >>> correct('speling')

  'spelling'

  >>> correct('korrecter')

  'corrector'

四、缺陷

我们使用的这种算法,有一些缺陷,如果投入生产环境,必须在这些方面加入改进。

(1)文本库必须有很高的精确性,不能包含拼写错误的词。

如果用户输入一个错误的拼法,文本库恰好包含了这种拼法,它就会被当成正确的拼法。

(2)对于不包含在文本库中的新词,没有提出解决办法。

如果用户输入一个新词,这个词不在文本库之中,就会被当作错误的拼写进行纠正。

(3)程序返回的是"编辑距离"为1的词,但某些情况下,正确的词的"编辑距离"为2。

比如,用户输入reciet,会被纠正为recite(编辑距离为1),但用户真正想要输入的词是receipt(编辑距离为2)。也就是说,"编辑距离"越短越正确的规则,并非所有情况下都成立。

(4)有些常见拼写错误的"编辑距离"大于2。

这样的错误,程序无法发现。下面就是一些例子,每一行前面那个词是正确的拼法,后面那个则是常见的错误拼法。

purple perpul
curtains courtens
minutes muinets
successful sucssuful
inefficient ineffiect
availability avaiblity
dissension desention
unnecessarily unessasarily
necessary nessasary
unnecessary unessessay
night nite
assessing accesing
necessitates nessisitates

(5)用户输入的词的拼写正确,但是其实想输入的是另一个词。

比如,用户输入是where,这个词拼写正确,程序不会纠正。但是,用户真正想输入的其实是were,不小心多打了一个h。

(6)程序返回的是出现频率最高的词,但用户真正想输入的是另一个词。

比如,用户输入ther,程序会返回the,因为它的出现频率最高。但是,用户真正想输入的其实是their,少打了一个i。也就是说,出现频率最高的词,不一定就是用户想输入的词。

(7)某些词有不同的拼法,程序无法辨别。

比如,英国英语和美国英语的拼法不一致。英国用户输入'humur',应该被纠正为'humour';美国用户输入'humur',应该被纠正为'humor'。但是,我们的程序会统一纠正为'humor'。

(完)





文章来源:http://www.ruanyifeng.com/blog/2011/08/bayesian_inference_part_one.html




推荐阅读
  • 本文由编程笔记#小编为大家整理,主要介绍了logistic回归(线性和非线性)相关的知识,包括线性logistic回归的代码和数据集的分布情况。希望对你有一定的参考价值。 ... [详细]
  • CSS3选择器的使用方法详解,提高Web开发效率和精准度
    本文详细介绍了CSS3新增的选择器方法,包括属性选择器的使用。通过CSS3选择器,可以提高Web开发的效率和精准度,使得查找元素更加方便和快捷。同时,本文还对属性选择器的各种用法进行了详细解释,并给出了相应的代码示例。通过学习本文,读者可以更好地掌握CSS3选择器的使用方法,提升自己的Web开发能力。 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • VScode格式化文档换行或不换行的设置方法
    本文介绍了在VScode中设置格式化文档换行或不换行的方法,包括使用插件和修改settings.json文件的内容。详细步骤为:找到settings.json文件,将其中的代码替换为指定的代码。 ... [详细]
  • Linux重启网络命令实例及关机和重启示例教程
    本文介绍了Linux系统中重启网络命令的实例,以及使用不同方式关机和重启系统的示例教程。包括使用图形界面和控制台访问系统的方法,以及使用shutdown命令进行系统关机和重启的句法和用法。 ... [详细]
  • 本文介绍了C#中数据集DataSet对象的使用及相关方法详解,包括DataSet对象的概述、与数据关系对象的互联、Rows集合和Columns集合的组成,以及DataSet对象常用的方法之一——Merge方法的使用。通过本文的阅读,读者可以了解到DataSet对象在C#中的重要性和使用方法。 ... [详细]
  • 不同优化算法的比较分析及实验验证
    本文介绍了神经网络优化中常用的优化方法,包括学习率调整和梯度估计修正,并通过实验验证了不同优化算法的效果。实验结果表明,Adam算法在综合考虑学习率调整和梯度估计修正方面表现较好。该研究对于优化神经网络的训练过程具有指导意义。 ... [详细]
  • 本文介绍了机器学习手册中关于日期和时区操作的重要性以及其在实际应用中的作用。文章以一个故事为背景,描述了学童们面对老先生的教导时的反应,以及上官如在这个过程中的表现。同时,文章也提到了顾慎为对上官如的恨意以及他们之间的矛盾源于早年的结局。最后,文章强调了日期和时区操作在机器学习中的重要性,并指出了其在实际应用中的作用和意义。 ... [详细]
  • IjustinheritedsomewebpageswhichusesMooTools.IneverusedMooTools.NowIneedtoaddsomef ... [详细]
  • 基于dlib的人脸68特征点提取(眨眼张嘴检测)python版本
    文章目录引言开发环境和库流程设计张嘴和闭眼的检测引言(1)利用Dlib官方训练好的模型“shape_predictor_68_face_landmarks.dat”进行68个点标定 ... [详细]
  • 本文介绍了在开发Android新闻App时,搭建本地服务器的步骤。通过使用XAMPP软件,可以一键式搭建起开发环境,包括Apache、MySQL、PHP、PERL。在本地服务器上新建数据库和表,并设置相应的属性。最后,给出了创建new表的SQL语句。这个教程适合初学者参考。 ... [详细]
  • javascript  – 概述在Firefox上无法正常工作
    我试图提出一些自定义大纲,以达到一些Web可访问性建议.但我不能用Firefox制作.这就是它在Chrome上的外观:而那个图标实际上是一个锚点.在Firefox上,它只概述了整个 ... [详细]
  • 本文介绍了Perl的测试框架Test::Base,它是一个数据驱动的测试框架,可以自动进行单元测试,省去手工编写测试程序的麻烦。与Test::More完全兼容,使用方法简单。以plural函数为例,展示了Test::Base的使用方法。 ... [详细]
  • Voicewo在线语音识别转换jQuery插件的特点和示例
    本文介绍了一款名为Voicewo的在线语音识别转换jQuery插件,该插件具有快速、架构、风格、扩展和兼容等特点,适合在互联网应用中使用。同时还提供了一个快速示例供开发人员参考。 ... [详细]
  • 《数据结构》学习笔记3——串匹配算法性能评估
    本文主要讨论串匹配算法的性能评估,包括模式匹配、字符种类数量、算法复杂度等内容。通过借助C++中的头文件和库,可以实现对串的匹配操作。其中蛮力算法的复杂度为O(m*n),通过随机取出长度为m的子串作为模式P,在文本T中进行匹配,统计平均复杂度。对于成功和失败的匹配分别进行测试,分析其平均复杂度。详情请参考相关学习资源。 ... [详细]
author-avatar
手机用户2502937497
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有