热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

不同优化算法的比较分析及实验验证

本文介绍了神经网络优化中常用的优化方法,包括学习率调整和梯度估计修正,并通过实验验证了不同优化算法的效果。实验结果表明,Adam算法在综合考虑学习率调整和梯度估计修正方面表现较好。该研究对于优化神经网络的训练过程具有指导意义。

目录

7.3 不同优化算法的比较分析

7.3.1 优化算法的实验设定

7.3.1.1 2D可视化实验

7.3.1.2 简单拟合实验

分别实例化自定义SimpleBatchGD优化器和调用torch.optim.SGD API, 验证自定义优化器的正确性

​​​​​​​7.3.2 学习率调整

7.3.2.1 AdaGrad算法

7.3.2.2 RMSprop算法

7.3.3 梯度估计修正

7.3.3.1 动量法

7.3.3.2 Adam算法

7.3.4 不同优化器的3D可视化对比

【选做题】

总结

参考文献 


7.3 不同优化算法的比较分析

飞桨AI Studio - 人工智能学习与实训社区 (baidu.com)

除了批大小对模型收敛速度的影响外,学习率梯度估计也是影响神经网络优化的重要因素。

神经网络优化中常用的优化方法也主要是如下两方面的改进,包括:

  • 学习率调整:通过自适应地调整学习率使得优化更稳定。AdaGrad、RMSprop、AdaDelta算法等。
  • 梯度估计修正:通过修正每次迭代时估计的梯度方向来加快收敛速度。动量法、Nesterov加速梯度方法等。

本节还会介绍综合学习率调整和梯度估计修正的优化算法,如Adam算法

7.3.1 优化算法的实验设定

7.3.1.1 2D可视化实验

为了更好地展示不同优化算法的能力对比,我们选择一个二维空间中的凸函数,然后用不同的优化算法来寻找最优解,并可视化梯度下降过程的轨迹

将被优化函数实现为OptimizedFunction算子,其forward方法是Sphere函数的前向计算,backward方法则计算被优化函数对x的偏导。代码实现如下:

from nndl.op import Op
import torch
class OptimizedFunction(Op):
    def __init__(self, w):
        super(OptimizedFunction, self).__init__()
        self.w = torch.as_tensor(w,dtype=torch.float32)
        self.params = {'x': torch.as_tensor(0,dtype=torch.float32)}
        self.grads = {'x': torch.as_tensor(0,dtype=torch.float32)}

    def forward(self, x):
        self.params['x'] = x
        return torch.matmul(self.w.T, torch.square(self.params['x']))

    def backward(self):
        self.grads['x'] = 2 * torch.multiply(self.w.T, self.params['x'])

 nndl.op.Op:

class Op(object):
    def __init__(self):
        pass

    def __call__(self, inputs):
        return self.forward(torch.as_tensor(inputs,dtype=torch.float32))

    def forward(self, inputs):
        raise NotImplementedError

    def backward(self, inputs):
        raise NotImplementedError

 小批量梯度下降优化器 复用3.1.4.3节定义的梯度下降优化器SimpleBatchGD。
训练函数 定义一个简易的训练函数,记录梯度下降过程中每轮的参数x和损失。代码实现如下:

def train_f(model, optimizer, x_init, epoch):
    x = x_init
    all_x = []
    losses = []
    for i in range(epoch):
        all_x.append(copy.copy(x.numpy()))
        loss = model(x)
        losses.append(loss)
        model.backward()
        optimizer.step()
        x = model.params['x']
    return torch.as_tensor(all_x), losses

 可视化函数 定义一个Visualization类,用于绘制x的更新轨迹。代码实现如下:

import numpy as np
import matplotlib.pyplt as plt
class Visualization(object):
    def __init__(self):
        x1 = np.arange(-5, 5, 0.1)
        x2 = np.arange(-5, 5, 0.1)
        x1, x2 = np.meshgrid(x1, x2)
        self.init_x = torch.as_tensor([x1, x2])

    def plot_2d(self, model, x, fig_name):
        fig, ax = plt.subplots(figsize=(10, 6))
        cp = ax.contourf(self.init_x[0], self.init_x[1], model(self.init_x.transpose(1,0)), colors=['#e4007f', '#f19ec2', '#e86096', '#eb7aaa', '#f6c8dc', '#f5f5f5', '#000000'])
        c = ax.contour(self.init_x[0], self.init_x[1], model(self.init_x.transpose(1,0)), colors='black')
        cbar = fig.colorbar(cp)
        ax.plot(x[:, 0], x[:, 1], '-o', color='#000000')
        ax.plot(0, 'r*', markersize=18, color='#fefefe')

        ax.set_xlabel('$x1$')
        ax.set_ylabel('$x2$')

        ax.set_xlim((-2, 5))
        ax.set_ylim((-2, 5))
        plt.savefig(fig_name)

 定义train_and_plot_f函数,调用train_f和Visualization,训练模型并可视化参数更新轨迹。代码实现如下:

def train_and_plot_f(model, optimizer, epoch, fig_name):
    x_init = torch.as_tensor([3, 4], dtype=torch.float32)
    print('x1 initiate: {}, x2 initiate: {}'.format(x_init[0].numpy(), x_init[1].numpy()))
    x, losses = train_f(model, optimizer, x_init, epoch)
    losses = np.array(losses)

    # 展示x1、x2的更新轨迹
    vis = Visualization()
    vis.plot_2d(model, x, fig_name)

 模型训练与可视化:

from nndl.op import SimpleBatchGD
# 固定随机种子
torch.seed()
w = torch.as_tensor([0.2, 2])
model = OptimizedFunction(w)
opt = SimpleBatchGD(init_lr=0.2, model=model)
# train_and_plot_f(model, opt, epoch=20, fig_name='opti-vis-para.pdf')

 nndl.op.SimpleBatchGD:

class SimpleBatchGD(Optimizer):
    def __init__(self, init_lr, model):
        super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)

    def step(self):
        #参数更新
        if isinstance(self.model.params, dict):
            for key in self.model.params.keys():
                self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]

 Optimizer:

# 优化器基类
class Optimizer(object):
    def __init__(self, init_lr, model):
        self.init_lr = init_lr
        #指定优化器需要优化的模型
        self.model = model

    @abstractmethod
    def step(self):
        pass

 实验结果

 输出图中不同颜色代表f(x1,x2)的值,具体数值可以参考图右侧的对应表,比如深粉色区域代表f(x1,x2)在0~8之间,不同颜色间黑色的曲线是等值线,代表落在该线上的点对应的f(x1,x2)的值都相同。

​​​​​​​7.3.1.2 简单拟合实验

这里我们随机生成一组数据作为数据样本,再构建一个简单的单层前馈神经网络,用于前向计算。 

数据集构建 随机生成一些训练数据X,并根据一个预定义函数y=0.5×x1+0.8×x2+0.01×noise计算得到y,再将X和y拼接起来得到训练样本

# 固定随机种子
torch.seed()
# 随机生成shape为(1000,2)的训练数据
X = torch.randn([1000, 2])
w = torch.as_tensor([0.5, 0.8])
w = torch.unsqueeze(w, dim=1)
noise = 0.01 * torch.rand([1000])
noise = torch.unsqueeze(noise, dim=1)
# 计算y
y = torch.matmul(X, w) + noise
# 打印X, y样本
print('X: ', X[0].numpy())
print('y: ', y[0].numpy())

# X,y组成训练样本数据
data = torch.concat((X, y), dim=1)
print('input data shape: ', data.shape)
print('data: ', data[0].numpy())

 运行结果

X:  [-1.1258398 -1.1523602]
y:  [-1.4770346]
input data shape:  torch.Size([1000, 3])
data:  [-1.1258398 -1.1523602 -1.4770346]

 定义Linear算子,实现一个线性层的前向和反向计算

class Linear(Op):
    def __init__(self, input_size,  weight_init=np.random.standard_normal, bias_init=torch.zeros):
        self.params = {}
        self.params['W'] = weight_init([input_size, 1])
        self.params['W'] = torch.as_tensor(self.params['W'],dtype=torch.float32)
        self.params['b'] = bias_init([1])

        self.inputs = None
        self.grads = {}

    def forward(self, inputs):
        self.inputs = inputs
        self.outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
        return self.outputs

    def backward(self, labels):
        K = self.inputs.shape[0]
        self.grads['W'] = 1./ K*torch.matmul(self.inputs.T, (self.outputs - labels))
        self.grads['b'] = 1./K* torch.sum(self.outputs-labels, dim=0)

这里backward函数中实现的梯度并不是forward函数对应的梯度,而是最终损失关于参数的梯度.由于这里的梯度是手动计算的,所以直接给出了最终的梯度 

训练函数 在准备好样本数据和网络以后,复用优化器SimpleBatchGD类,使用小批量梯度下降来进行简单的拟合实验,模型训练train函数的代码实现如下

def train(data, num_epochs, batch_size, model, calculate_loss, optimizer, verbose=False):
    """
    训练神经网络
    输入:
        - data:训练样本
        - num_epochs:训练回合数
        - batch_size:批大小
        - model:实例化的模型
        - calculate_loss:损失函数
        - optimizer:优化器
        - verbose:日志显示,默认为False
    输出:
        - iter_loss:每一次迭代的损失值
        - epoch_loss:每个回合的平均损失值
    """
    # 记录每个回合损失的变化
    epoch_loss = []
    # 记录每次迭代损失的变化
    iter_loss = []
    N = len(data)
    for epoch_id in range(num_epochs):
        # np.random.shuffle(data) #不再随机打乱数据
        # 将训练数据进行拆分,每个mini_batch包含batch_size条的数据
        mini_batches = [data[i:i+batch_size] for i in range(0, N, batch_size)]
        for iter_id, mini_batch in enumerate(mini_batches):
            # data中前两个分量为X
            inputs = mini_batch[:, :-1]
            # data中最后一个分量为y
            labels = mini_batch[:, -1:]
            # 前向计算
            outputs = model(inputs)
            # 计算损失
            loss = calculate_loss(outputs, labels).numpy()
            # 计算梯度
            model.backward(labels)
            # 梯度更新
            optimizer.step()
            iter_loss.append(loss)
        # verbose = True 则打印当前回合的损失
        if verbose:
            print('Epoch {:3d}, loss = {:.4f}'.format(epoch_id, np.mean(iter_loss)))
        epoch_loss.append(np.mean(iter_loss))
    return iter_loss, epoch_loss

 优化过程可视化 定义plot_loss函数,用于绘制损失函数变化趋势 

def plot_loss(iter_loss, epoch_loss, fig_name):
    """
    可视化损失函数的变化趋势
    """
    plt.figure(figsize=(10, 4))
    ax1 = plt.subplot(121)
    ax1.plot(iter_loss, color='#e4007f')
    plt.title('iteration loss')
    ax2 = plt.subplot(122)
    ax2.plot(epoch_loss, color='#f19ec2')
    plt.title('epoch loss')
    plt.savefig(fig_name)
    plt.show()

 定义train_and_plot函数,调用train和plot_loss函数,训练并展示每个回合和每次迭代(Iteration)的损失变化情况 

import torch.nn as nn
def train_and_plot(optimizer, fig_name):
    """
    训练网络并画出损失函数的变化趋势
    输入:
        - optimizer:优化器
    """
    # 定义均方差损失
    mse = nn.MSELoss()
    iter_loss, epoch_loss = train(data, num_epochs=30, batch_size=64, model=model, calculate_loss=mse, optimizer=optimizer)
    plot_loss(iter_loss, epoch_loss, fig_name)

训练网络并可视化损失函数的变化趋势 

# 固定随机种子
torch.manual_seed(0)
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = SimpleBatchGD(init_lr=0.01, model=model)
train_and_plot(opt, 'opti-loss.pdf')

 ​​​​​​​

 从输出结果看,loss在不断减小,模型逐渐收敛。

分别实例化自定义SimpleBatchGD优化器和调用torch.optim.SGD API, 验证自定义优化器的正确性

# 固定随机种子
torch.seed()
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = SimpleBatchGD(init_lr=0.01, model=model)

x = data[0, :-1].unsqueeze(0)
y = data[0, -1].unsqueeze(0)

model1 = Linear(2)
print('model1 parameter W: ', model1.params['W'].numpy())
opt1 = SimpleBatchGD(init_lr=0.01, model=model1)
output1 = model1(x)

model2 = nn.Linear(2, 1)
model2.weight = torch.nn.Parameter(model1.params['W'])
print('model2 parameter W: ', model2.state_dict()['weight'].numpy())
output2 = model2(x.T)

model1.backward(y)
opt1.step()
print('model1 parameter W after train step: ', model1.params['W'].numpy())

opt2 = torch.optim.SGD(lr=0.01, params=model2.parameters())
loss = torch.nn.functional.mse_loss(output2, y) / 2
loss.backward()
opt2.step()
opt2.zero_grad()
print('model2 parameter W after train step: ', model2.state_dict()['weight'].numpy())

 运行结果

model1 parameter W:  [[ 1.5409961]
 [-0.2934289]]
model2 parameter W:  [[ 1.5409961 -0.2934289]]
model1 parameter W after train step:  [[ 1.5418997 ]
 [-0.29250407]]

model2 parameter W after train step:  [[ 1.5417418 -0.2926655]]

 从输出结果看,在一次梯度更新后,两个模型的参数值保持一致,证明优化器实现正确

​​​​​​​7.3.2 学习率调整

学习率是神经网络优化时的重要超参数。在梯度下降法中,学习率αα的取值非常关键,如果取值过大就不会收敛,如果过小则收敛速度太慢。

7.3.2.1 AdaGrad算法

构建优化器 定义Adagrad类,继承Optimizer类。定义step函数调用adagrad进行参数更新

class Adagrad(Optimizer):
    def __init__(self, init_lr, model, epsilon):
        """
        Adagrad 优化器初始化
        输入:
            - init_lr: 初始学习率
            - model:模型,model.params存储模型参数值
            - epsilon:保持数值稳定性而设置的非常小的常数
        """
        super(Adagrad, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.epsilon = epsilon
 
    def adagrad(self, x, gradient_x, G, init_lr):
        """
        adagrad算法更新参数,G为参数梯度平方的累计值。
        """
        G += gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G
 
    def step(self):
        """
        参数更新
        """
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)

 2D可视化实验 使用被优化函数展示Adagrad算法的参数更新轨迹

# 固定随机种子
torch.manual_seed(0)
w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = Adagrad(init_lr=0.5, model=model, epsilon=1e-7)
train_and_plot_f(model, opt, epoch=50, fig_name='opti-vis-para2.pdf')

 

从输出结果看,AdaGrad算法在前几个回合更新时参数更新幅度较大,随着回合数增加,学习率逐渐缩小,参数更新幅度逐渐缩小。在AdaGrad算法中,如果某个参数的偏导数累积比较大,其学习率相对较小。相反,如果其偏导数累积较小,其学习率相对较大。但整体随着迭代次数的增加,学习率逐渐缩小。该算法的缺点是在经过一定次数的迭代依然没有找到最优点时,由于这时的学习率已经非常小,很难再继续找到最优点。

简单拟合实验 训练单层线性网络,验证损失是否收敛。代码实现如下:

# 固定随机种子
torch.manual_seed(0)
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = Adagrad(init_lr=0.1, model=model, epsilon=1e-7)
train_and_plot(opt, 'opti-loss2.pdf')

 

7.3.2.2 RMSprop算法

RMSprop算法是一种自适应学习率的方法,可以在有些情况下避免AdaGrad算法中学习率不断单调下降以至于过早衰减的缺点。

构建优化器 定义RMSprop类,继承Optimizer类。定义step函数调用rmsprop更新参数 

class RMSprop(Optimizer):
    def __init__(self, init_lr, model, beta, epsilon):
        """
        RMSprop优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta:衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(RMSprop, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.beta = beta
        self.epsilon = epsilon
 
    def rmsprop(self, x, gradient_x, G, init_lr):
        """
        rmsprop算法更新参数,G为迭代梯度平方的加权移动平均
        """
        G = self.beta * G + (1 - self.beta) * gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)

 2D可视化实验 使用被优化函数展示RMSprop算法的参数更新轨迹 

# 固定随机种子
torch.manual_seed(0)
w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = RMSprop(init_lr=0.1, model=model, beta=0.9, epsilon=1e-7)
train_and_plot_f(model, opt, epoch=50, fig_name='opti-vis-para3.pdf')

 简单拟合实验 训练单层线性网络,进行简单的拟合实验

# 固定随机种子
torch.manual_seed(0)
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = RMSprop(init_lr=0.1, model=model, beta=0.9, epsilon=1e-7)
train_and_plot(opt, 'opti-loss3.pdf')

  

7.3.3 梯度估计修正

除了调整学习率之外,还可以进行梯度估计修正。在小批量梯度下降法中,由于每次迭代的样本具有一定的随机性,因此每次迭代的梯度估计和整个训练集上的最优梯度并不一致。如果每次选取样本数量比较小,损失会呈振荡的方式下降。

一种有效地缓解梯度估计随机性的方式是通过使用最近一段时间内的平均梯度来代替当前时刻的随机梯度来作为参数更新的方向,从而提高优化速度。

7.3.3.1 动量法

用之前积累动量来替代真正的梯度。每次迭代的梯度可以看作加速度。

构建优化器 定义Momentum类,继承Optimizer类。定义step函数调用momentum进行参数更新

class Momentum(Optimizer):
    def __init__(self, init_lr, model, rho):
        """
        Momentum优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - rho:动量因子
        """
        super(Momentum, self).__init__(init_lr=init_lr, model=model)
        self.delta_x = {}
        for key in self.model.params.keys():
            self.delta_x[key] = 0
        self.rho = rho
 
    def momentum(self, x, gradient_x, delta_x, init_lr):
        """
        momentum算法更新参数,delta_x为梯度的加权移动平均
        """
        delta_x = self.rho * delta_x - init_lr * gradient_x
        x += delta_x
        return x, delta_x
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],
                                                                      self.model.grads[key],
                                                                      self.delta_x[key],
                                                                      self.init_lr)

   2D可视化实验 使用被优化函数展示Momentum算法的参数更新轨迹

# 固定随机种子
torch.manual_seed(0)
w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = Momentum(init_lr=0.01, model=model, rho=0.9)
train_and_plot_f(model, opt, epoch=50, fig_name='opti-vis-para4.pdf')

从输出结果看,在模型训练初期,梯度方向比较一致,参数更新幅度逐渐增大,起加速作用;在迭代后期,参数更新幅度减小,在收敛值附近振荡

 简单拟合实验 训练单层线性网络,进行简单的拟合实验。

# 固定随机种子
torch.manual_seed(0)
 
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = Momentum(init_lr=0.01, model=model, rho=0.9)
train_and_plot(opt, 'opti-loss4.pdf')

7.3.3.2 Adam算法

Adam算法(自适应矩估计算法)可以看作动量法RMSprop算法的结合,不但使用动量作为参数更新方向,而且可以自适应调整学习率。

构建优化器 定义Adam类,继承Optimizer类。定义step函数调用adam函数更新参数 

class Adam(Optimizer):
    def __init__(self, init_lr, model, beta1, beta2, epsilon):
        """
        Adam优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta1, beta2:移动平均的衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(Adam, self).__init__(init_lr=init_lr, model=model)
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.M, self.G = {}, {}
        for key in self.model.params.keys():
            self.M[key] = 0
            self.G[key] = 0
        self.t = 1
 
    def adam(self, x, gradient_x, G, M, t, init_lr):
        """
        adam算法更新参数
        输入:
            - x:参数
            - G:梯度平方的加权移动平均
            - M:梯度的加权移动平均
            - t:迭代次数
            - init_lr:初始学习率
        """
        M = self.beta1 * M + (1 - self.beta1) * gradient_x
        G = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2
        M_hat = M / (1 - self.beta1 ** t)
        G_hat = G / (1 - self.beta2 ** t)
        t += 1
        x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hat
        return x, G, M, t
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],
                                                                                 self.model.grads[key],
                                                                                 self.G[key],
                                                                                 self.M[key],
                                                                                 self.t,
                                                                                 self.init_lr)

  2D可视化实验 使用被优化函数展示Adam算法的参数更新轨迹 

# 固定随机种子
torch.manual_seed(0)
w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = Adam(init_lr=0.2, model=model, beta1=0.9, beta2=0.99, epsilon=1e-7)
train_and_plot_f(model, opt, epoch=20, fig_name='opti-vis-para5.pdf')

  从输出结果看,Adam算法可以自适应调整学习率,参数更新更加平稳

简单拟合实验 训练单层线性网络,进行简单的拟合实验 ​​​​​​​

# 固定随机种子
torch.manual_seed(0)
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = Adam(init_lr=0.1, model=model, beta1=0.9, beta2=0.99, epsilon=1e-7)
train_and_plot(opt, 'opti-loss5.pdf')

7.3.4 不同优化器的3D可视化对比

百度AI Studio课程_学习成就梦想,AI遇见未来_AI课程 - 百度AI Studio - 人工智能学习与实训社区 (baidu.com)

 

import torch
import numpy as np
import copy
from matplotlib import pyplot as plt
from matplotlib import animation
from itertools import zip_longest
 
 
class Op(object):
    def __init__(self):
        pass
 
    def __call__(self, inputs):
        return self.forward(inputs)
 
    # 输入:张量inputs
    # 输出:张量outputs
    def forward(self, inputs):
        # return outputs
        raise NotImplementedError
 
    # 输入:最终输出对outputs的梯度outputs_grads
    # 输出:最终输出对inputs的梯度inputs_grads
    def backward(self, outputs_grads):
        # return inputs_grads
        raise NotImplementedError
 
 
class Optimizer(object):  # 优化器基类
    def __init__(self, init_lr, model):
        """
        优化器类初始化
        """
        # 初始化学习率,用于参数更新的计算
        self.init_lr = init_lr
        # 指定优化器需要优化的模型
        self.model = model
 
    def step(self):
        """
        定义每次迭代如何更新参数
        """
        pass
 
 
class SimpleBatchGD(Optimizer):
    def __init__(self, init_lr, model):
        super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)
 
    def step(self):
        # 参数更新
        if isinstance(self.model.params, dict):
            for key in self.model.params.keys():
                self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]
 
 
class Adagrad(Optimizer):
    def __init__(self, init_lr, model, epsilon):
        """
        Adagrad 优化器初始化
        输入:
            - init_lr: 初始学习率 - model:模型,model.params存储模型参数值  - epsilon:保持数值稳定性而设置的非常小的常数
        """
        super(Adagrad, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.epsilon = epsilon
 
    def adagrad(self, x, gradient_x, G, init_lr):
        """
        adagrad算法更新参数,G为参数梯度平方的累计值。
        """
        G += gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G
 
    def step(self):
        """
        参数更新
        """
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)
 
 
class RMSprop(Optimizer):
    def __init__(self, init_lr, model, beta, epsilon):
        """
        RMSprop优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta:衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(RMSprop, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.beta = beta
        self.epsilon = epsilon
 
    def rmsprop(self, x, gradient_x, G, init_lr):
        """
        rmsprop算法更新参数,G为迭代梯度平方的加权移动平均
        """
        G = self.beta * G + (1 - self.beta) * gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)
 
 
class Momentum(Optimizer):
    def __init__(self, init_lr, model, rho):
        """
        Momentum优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - rho:动量因子
        """
        super(Momentum, self).__init__(init_lr=init_lr, model=model)
        self.delta_x = {}
        for key in self.model.params.keys():
            self.delta_x[key] = 0
        self.rho = rho
 
    def momentum(self, x, gradient_x, delta_x, init_lr):
        """
        momentum算法更新参数,delta_x为梯度的加权移动平均
        """
        delta_x = self.rho * delta_x - init_lr * gradient_x
        x += delta_x
        return x, delta_x
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],
                                                                      self.model.grads[key],
                                                                      self.delta_x[key],
                                                                      self.init_lr)
 
 
class Adam(Optimizer):
    def __init__(self, init_lr, model, beta1, beta2, epsilon):
        """
        Adam优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta1, beta2:移动平均的衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(Adam, self).__init__(init_lr=init_lr, model=model)
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.M, self.G = {}, {}
        for key in self.model.params.keys():
            self.M[key] = 0
            self.G[key] = 0
        self.t = 1
 
    def adam(self, x, gradient_x, G, M, t, init_lr):
        """
        adam算法更新参数
        输入:
            - x:参数
            - G:梯度平方的加权移动平均
            - M:梯度的加权移动平均
            - t:迭代次数
            - init_lr:初始学习率
        """
        M = self.beta1 * M + (1 - self.beta1) * gradient_x
        G = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2
        M_hat = M / (1 - self.beta1 ** t)
        G_hat = G / (1 - self.beta2 ** t)
        t += 1
        x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hat
        return x, G, M, t
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],
                                                                                 self.model.grads[key],
                                                                                 self.G[key],
                                                                                 self.M[key],
                                                                                 self.t,
                                                                                 self.init_lr)
 
 
class OptimizedFunction3D(Op):
    def __init__(self):
        super(OptimizedFunction3D, self).__init__()
        self.params = {'x': 0}
        self.grads = {'x': 0}
 
    def forward(self, x):
        self.params['x'] = x
        return x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]
 
    def backward(self):
        x = self.params['x']
        gradient1 = 2 * x[0] + x[1]
        gradient2 = 2 * x[1] + 3 * x[1] ** 2 + x[0]
        grad1 = torch.Tensor([gradient1])
        grad2 = torch.Tensor([gradient2])
        self.grads['x'] = torch.cat([grad1, grad2])
 
 
class Visualization3D(animation.FuncAnimation):
    """    绘制动态图像,可视化参数更新轨迹    """
 
    def __init__(self, *xy_values, z_values, labels=[], colors=[], fig, ax, interval=600, blit=True, **kwargs):
        """
        初始化3d可视化类
        输入:
            xy_values:三维中x,y维度的值
            z_values:三维中z维度的值
            labels:每个参数更新轨迹的标签
            colors:每个轨迹的颜色
            interval:帧之间的延迟(以毫秒为单位)
            blit:是否优化绘图
        """
        self.fig = fig
        self.ax = ax
        self.xy_values = xy_values
        self.z_values = z_values
 
        frames = max(xy_value.shape[0] for xy_value in xy_values)
        self.lines = [ax.plot([], [], [], label=label, color=color, lw=2)[0]
                      for _, label, color in zip_longest(xy_values, labels, colors)]
        super(Visualization3D, self).__init__(fig, self.animate, init_func=self.init_animation, frames=frames,
                                              interval=interval, blit=blit, **kwargs)
 
    def init_animation(self):
        # 数值初始化
        for line in self.lines:
            line.set_data([], [])
            # line.set_3d_properties(np.asarray([]))  # 源程序中有这一行,加上会报错。 Edit by David 2022.12.4
        return self.lines
 
    def animate(self, i):
        # 将x,y,z三个数据传入,绘制三维图像
        for line, xy_value, z_value in zip(self.lines, self.xy_values, self.z_values):
            line.set_data(xy_value[:i, 0], xy_value[:i, 1])
            line.set_3d_properties(z_value[:i])
        return self.lines
 
 
def train_f(model, optimizer, x_init, epoch):
    x = x_init
    all_x = []
    losses = []
    for i in range(epoch):
        all_x.append(copy.deepcopy(x.numpy()))  # 浅拷贝 改为 深拷贝, 否则List的原值会被改变。 Edit by David 2022.12.4.
        loss = model(x)
        losses.append(loss)
        model.backward()
        optimizer.step()
        x = model.params['x']
    return torch.Tensor(np.array(all_x)), losses
 
 
# 构建5个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.01, model=model1)
 
model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=0.5, model=model2, epsilon=1e-7)
 
model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.1, model=model3, beta=0.9, epsilon=1e-7)
 
model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.01, model=model4, rho=0.9)
 
model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.1, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)
 
models = [model1, model2, model3, model4, model5]
opts = [opt_gd, opt_adagrad, opt_rmsprop, opt_momentum, opt_adam]
 
x_all_opts = []
z_all_opts = []
 
# 使用不同优化器训练
 
for model, opt in zip(models, opts):
    x_init = torch.FloatTensor([2, 3])
    x_one_opt, z_one_opt = train_f(model, opt, x_init, 150)  # epoch
    # 保存参数值
    x_all_opts.append(x_one_opt.numpy())
    z_all_opts.append(np.squeeze(z_one_opt))
 
# 使用numpy.meshgrid生成x1,x2矩阵,矩阵的每一行为[-3, 3],以0.1为间隔的数值
x1 = np.arange(-3, 3, 0.1)
x2 = np.arange(-3, 3, 0.1)
x1, x2 = np.meshgrid(x1, x2)
init_x = torch.Tensor(np.array([x1, x2]))
 
model = OptimizedFunction3D()
 
# 绘制 f_3d函数 的 三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
X = init_x[0].numpy()
Y = init_x[1].numpy()
Z = model(init_x).numpy()  # 改为 model(init_x).numpy() David 2022.12.4
ax.plot_surface(X, Y, Z, cmap='rainbow')
 
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')
 
labels = ['SGD', 'AdaGrad', 'RMSprop', 'Momentum', 'Adam']
colors = ['#f6373c', '#f6f237', '#45f637', '#37f0f6', '#000000']
 
animator = Visualization3D(*x_all_opts, z_values=z_all_opts, labels=labels, colors=colors, fig=fig, ax=ax)
ax.legend(loc='upper left')
 
plt.show()
animator.save('animation.gif')  # 效果不好,估计被挡住了…… 有待进一步提高 Edit by David 2022.12.4

  从输出结果看,对于我们构建的函数,有些优化器如Momentum在参数更新时成功逃离鞍点,其他优化器在本次实验中收敛到鞍点处没有成功逃离。但这并不证明Momentum优化器是最好的优化器,在模型训练时使用哪种优化器,还要结合具体的场景和数据具体分析

【选做题】

  1. 编程实现下面的动画

import torch
import numpy as np
import copy
from matplotlib import pyplot as plt
from matplotlib import animation
from itertools import zip_longest
from matplotlib import cm
 
 
class Op(object):
    def __init__(self):
        pass
 
    def __call__(self, inputs):
        return self.forward(inputs)
 
    # 输入:张量inputs
    # 输出:张量outputs
    def forward(self, inputs):
        # return outputs
        raise NotImplementedError
 
    # 输入:最终输出对outputs的梯度outputs_grads
    # 输出:最终输出对inputs的梯度inputs_grads
    def backward(self, outputs_grads):
        # return inputs_grads
        raise NotImplementedError
 
 
class Optimizer(object):  # 优化器基类
    def __init__(self, init_lr, model):
        """
        优化器类初始化
        """
        # 初始化学习率,用于参数更新的计算
        self.init_lr = init_lr
        # 指定优化器需要优化的模型
        self.model = model
 
    def step(self):
        """
        定义每次迭代如何更新参数
        """
        pass
 
 
class SimpleBatchGD(Optimizer):
    def __init__(self, init_lr, model):
        super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)
 
    def step(self):
        # 参数更新
        if isinstance(self.model.params, dict):
            for key in self.model.params.keys():
                self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]
 
 
class Adagrad(Optimizer):
    def __init__(self, init_lr, model, epsilon):
        """
        Adagrad 优化器初始化
        输入:
            - init_lr: 初始学习率 - model:模型,model.params存储模型参数值  - epsilon:保持数值稳定性而设置的非常小的常数
        """
        super(Adagrad, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.epsilon = epsilon
 
    def adagrad(self, x, gradient_x, G, init_lr):
        """
        adagrad算法更新参数,G为参数梯度平方的累计值。
        """
        G += gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G
 
    def step(self):
        """
        参数更新
        """
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)
 
 
class RMSprop(Optimizer):
    def __init__(self, init_lr, model, beta, epsilon):
        """
        RMSprop优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta:衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(RMSprop, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.beta = beta
        self.epsilon = epsilon
 
    def rmsprop(self, x, gradient_x, G, init_lr):
        """
        rmsprop算法更新参数,G为迭代梯度平方的加权移动平均
        """
        G = self.beta * G + (1 - self.beta) * gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)
 
 
class Momentum(Optimizer):
    def __init__(self, init_lr, model, rho):
        """
        Momentum优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - rho:动量因子
        """
        super(Momentum, self).__init__(init_lr=init_lr, model=model)
        self.delta_x = {}
        for key in self.model.params.keys():
            self.delta_x[key] = 0
        self.rho = rho
 
    def momentum(self, x, gradient_x, delta_x, init_lr):
        """
        momentum算法更新参数,delta_x为梯度的加权移动平均
        """
        delta_x = self.rho * delta_x - init_lr * gradient_x
        x += delta_x
        return x, delta_x
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],
                                                                      self.model.grads[key],
                                                                      self.delta_x[key],
                                                                      self.init_lr)
 
 
class Adam(Optimizer):
    def __init__(self, init_lr, model, beta1, beta2, epsilon):
        """
        Adam优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta1, beta2:移动平均的衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(Adam, self).__init__(init_lr=init_lr, model=model)
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.M, self.G = {}, {}
        for key in self.model.params.keys():
            self.M[key] = 0
            self.G[key] = 0
        self.t = 1
 
    def adam(self, x, gradient_x, G, M, t, init_lr):
        """
        adam算法更新参数
        输入:
            - x:参数
            - G:梯度平方的加权移动平均
            - M:梯度的加权移动平均
            - t:迭代次数
            - init_lr:初始学习率
        """
        M = self.beta1 * M + (1 - self.beta1) * gradient_x
        G = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2
        M_hat = M / (1 - self.beta1 ** t)
        G_hat = G / (1 - self.beta2 ** t)
        t += 1
        x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hat
        return x, G, M, t
 
    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],
                                                                                 self.model.grads[key],
                                                                                 self.G[key],
                                                                                 self.M[key],
                                                                                 self.t,
                                                                                 self.init_lr)
 
 
class OptimizedFunction3D(Op):
    def __init__(self):
        super(OptimizedFunction3D, self).__init__()
        self.params = {'x': 0}
        self.grads = {'x': 0}
 
    def forward(self, x):
        self.params['x'] = x
        return - x[0] * x[0] / 2 + x[1] * x[1] / 1  # x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]
 
    def backward(self):
        x = self.params['x']
        gradient1 = - 2 * x[0] / 2
        gradient2 = 2 * x[1] / 1
        grad1 = torch.Tensor([gradient1])
        grad2 = torch.Tensor([gradient2])
        self.grads['x'] = torch.cat([grad1, grad2])
 
 
class Visualization3D(animation.FuncAnimation):
    """    绘制动态图像,可视化参数更新轨迹    """
 
    def __init__(self, *xy_values, z_values, labels=[], colors=[], fig, ax, interval=100, blit=True, **kwargs):
        """
        初始化3d可视化类
        输入:
            xy_values:三维中x,y维度的值
            z_values:三维中z维度的值
            labels:每个参数更新轨迹的标签
            colors:每个轨迹的颜色
            interval:帧之间的延迟(以毫秒为单位)
            blit:是否优化绘图
        """
        self.fig = fig
        self.ax = ax
        self.xy_values = xy_values
        self.z_values = z_values
 
        frames = max(xy_value.shape[0] for xy_value in xy_values)
 
        self.lines = [ax.plot([], [], [], label=label, color=color, lw=2)[0]
                      for _, label, color in zip_longest(xy_values, labels, colors)]
        self.points = [ax.plot([], [], [], color=color, markeredgeblack', marker='o')[0]
                       for _, color in zip_longest(xy_values, colors)]
        # print(self.lines)
        super(Visualization3D, self).__init__(fig, self.animate, init_func=self.init_animation, frames=frames,
                                              interval=interval, blit=blit, **kwargs)
 
    def init_animation(self):
        # 数值初始化
        for line in self.lines:
            line.set_data_3d([], [], [])
        for point in self.points:
            point.set_data_3d([], [], [])
        return self.points + self.lines
 
    def animate(self, i):
        # 将x,y,z三个数据传入,绘制三维图像
        for line, xy_value, z_value in zip(self.lines, self.xy_values, self.z_values):
            line.set_data_3d(xy_value[:i, 0], xy_value[:i, 1], z_value[:i])
        for point, xy_value, z_value in zip(self.points, self.xy_values, self.z_values):
            point.set_data_3d(xy_value[i, 0], xy_value[i, 1], z_value[i])
        return self.points + self.lines
 
 
def train_f(model, optimizer, x_init, epoch):
    x = x_init
    all_x = []
    losses = []
    for i in range(epoch):
        all_x.append(copy.deepcopy(x.numpy()))  # 浅拷贝 改为 深拷贝, 否则List的原值会被改变。 Edit by David 2022.12.4.
        loss = model(x)
        losses.append(loss)
        model.backward()
        optimizer.step()
        x = model.params['x']
    return torch.Tensor(np.array(all_x)), losses
 
 
# 构建5个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.05, model=model1)
 
model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=0.05, model=model2, epsilon=1e-7)
 
model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.05, model=model3, beta=0.9, epsilon=1e-7)
 
model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.05, model=model4, rho=0.9)
 
model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.05, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)
 
models = [model5, model2, model3, model4, model1]
opts = [opt_adam, opt_adagrad, opt_rmsprop, opt_momentum, opt_gd]
 
x_all_opts = []
z_all_opts = []
 
# 使用不同优化器训练
 
for model, opt in zip(models, opts):
    x_init = torch.FloatTensor([0.00001, 0.5])
    x_one_opt, z_one_opt = train_f(model, opt, x_init, 100)  # epoch
    # 保存参数值
    x_all_opts.append(x_one_opt.numpy())
    z_all_opts.append(np.squeeze(z_one_opt))
 
# 使用numpy.meshgrid生成x1,x2矩阵,矩阵的每一行为[-3, 3],以0.1为间隔的数值
x1 = np.arange(-1, 2, 0.01)
x2 = np.arange(-1, 1, 0.05)
x1, x2 = np.meshgrid(x1, x2)
init_x = torch.Tensor(np.array([x1, x2]))
 
model = OptimizedFunction3D()
 
# 绘制 f_3d函数 的 三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
X = init_x[0].numpy()
Y = init_x[1].numpy()
Z = model(init_x).numpy()  # 改为 model(init_x).numpy() David 2022.12.4
surf = ax.plot_surface(X, Y, Z, edgecolor='grey', cmap=cm.coolwarm)
# fig.colorbar(surf, shrink=0.5, aspect=1)
ax.set_zlim(-3, 2)
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')
 
labels = ['Adam', 'AdaGrad', 'RMSprop', 'Momentum', 'SGD']
colors = ['#8B0000', '#0000FF', '#000000', '#008B00', '#FF0000']
 
animator = Visualization3D(*x_all_opts, z_values=z_all_opts, labels=labels, colors=colors, fig=fig, ax=ax)
ax.legend(loc='upper right')
 
plt.show()
# animator.save('teaser' + '.gif', writer='imagemagick',fps=10) # 效果不好,估计被挡住了…… 有待进一步提高 Edit by David 2022.12.4

总结

本次实验是对不同优化算法的比较,对于AdaGrad和RMSprop算法有了更深的了解,通过代码实现动画效果展示出了不同优化算法之间的区别,通过本次实验,也了解了深拷贝和浅拷贝,浅拷贝主要是对指针的拷贝,拷贝后两个指针指向同一个内存空间,深拷贝需要不但对指针进行拷贝,并对指针指向的内容进行拷贝,经过深拷贝后的指针是指向两个不同地址的指针。

参考文献 

CS231n Convolutional Neural Networks for Visual Recognition

NNDL实验 优化算法3D轨迹 鱼书例题3D版

 NNDL实验 优化算法3D轨迹 复现cs231经典动画

百度AI Studio课程_学习成就梦想,AI遇见未来_AI课程 - 百度AI Studio - 人工智能学习与实训社区 (baidu.com)

深拷贝和浅拷贝的区别 ​​​​​​​


推荐阅读
  • CF:3D City Model(小思维)问题解析和代码实现
    本文通过解析CF:3D City Model问题,介绍了问题的背景和要求,并给出了相应的代码实现。该问题涉及到在一个矩形的网格上建造城市的情景,每个网格单元可以作为建筑的基础,建筑由多个立方体叠加而成。文章详细讲解了问题的解决思路,并给出了相应的代码实现供读者参考。 ... [详细]
  • 本文介绍了lua语言中闭包的特性及其在模式匹配、日期处理、编译和模块化等方面的应用。lua中的闭包是严格遵循词法定界的第一类值,函数可以作为变量自由传递,也可以作为参数传递给其他函数。这些特性使得lua语言具有极大的灵活性,为程序开发带来了便利。 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • PHP图片截取方法及应用实例
    本文介绍了使用PHP动态切割JPEG图片的方法,并提供了应用实例,包括截取视频图、提取文章内容中的图片地址、裁切图片等问题。详细介绍了相关的PHP函数和参数的使用,以及图片切割的具体步骤。同时,还提供了一些注意事项和优化建议。通过本文的学习,读者可以掌握PHP图片截取的技巧,实现自己的需求。 ... [详细]
  • Commit1ced2a7433ea8937a1b260ea65d708f32ca7c95eintroduceda+Clonetraitboundtom ... [详细]
  • Python语法上的区别及注意事项
    本文介绍了Python2x和Python3x在语法上的区别,包括print语句的变化、除法运算结果的不同、raw_input函数的替代、class写法的变化等。同时还介绍了Python脚本的解释程序的指定方法,以及在不同版本的Python中如何执行脚本。对于想要学习Python的人来说,本文提供了一些注意事项和技巧。 ... [详细]
  • 本文介绍了UVALive6575题目Odd and Even Zeroes的解法,使用了数位dp和找规律的方法。阶乘的定义和性质被介绍,并给出了一些例子。其中,部分阶乘的尾零个数为奇数,部分为偶数。 ... [详细]
  • Html5-Canvas实现简易的抽奖转盘效果
    本文介绍了如何使用Html5和Canvas标签来实现简易的抽奖转盘效果,同时使用了jQueryRotate.js旋转插件。文章中给出了主要的html和css代码,并展示了实现的基本效果。 ... [详细]
  • Imtryingtofigureoutawaytogeneratetorrentfilesfromabucket,usingtheAWSSDKforGo.我正 ... [详细]
  • 【shell】网络处理:判断IP是否在网段、两个ip是否同网段、IP地址范围、网段包含关系
    本文介绍了使用shell脚本判断IP是否在同一网段、判断IP地址是否在某个范围内、计算IP地址范围、判断网段之间的包含关系的方法和原理。通过对IP和掩码进行与计算,可以判断两个IP是否在同一网段。同时,还提供了一段用于验证IP地址的正则表达式和判断特殊IP地址的方法。 ... [详细]
  • Learning to Paint with Model-based Deep Reinforcement Learning
    本文介绍了一种基于模型的深度强化学习方法,通过结合神经渲染器,教机器像人类画家一样进行绘画。该方法能够生成笔画的坐标点、半径、透明度、颜色值等,以生成类似于给定目标图像的绘画。文章还讨论了该方法面临的挑战,包括绘制纹理丰富的图像等。通过对比实验的结果,作者证明了基于模型的深度强化学习方法相对于基于模型的DDPG和模型无关的DDPG方法的优势。该研究对于深度强化学习在绘画领域的应用具有重要意义。 ... [详细]
  • 本文介绍了如何在Jquery中通过元素的样式值获取元素,并将其赋值给一个变量。提供了5种解决方案供参考。 ... [详细]
  • 简述在某个项目中需要分析PHP代码,分离出对应的函数调用(以及源代码对应的位置)。虽然这使用正则也可以实现,但无论从效率还是代码复杂度方面考虑ÿ ... [详细]
  • 花瓣|目标值_Compose 动画边学边做夏日彩虹
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了Compose动画边学边做-夏日彩虹相关的知识,希望对你有一定的参考价值。引言Comp ... [详细]
  • 我用Tkinter制作了一个图形用户界面,有两个主按钮:“开始”和“停止”。请您就如何使用“停止”按钮终止“开始”按钮为以下代码调用的已运行功能提供建议 ... [详细]
author-avatar
violet
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有