热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

logistic回归(线性和非线性)的开发笔记

本文由编程笔记#小编为大家整理,主要介绍了logistic回归(线性和非线性)相关的知识,包括线性logistic回归的代码和数据集的分布情况。希望对你有一定的参考价值。
本文由编程笔记#小编为大家整理,主要介绍了logistic 回归(线性和非线性)相关的知识,希望对你有一定的参考价值。


一:线性logistic 回归

代码如下:


import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.optimize as opt
import seaborn as sns
#读取数据集
path = ex2data1.txt
data
= pd.read_csv(path, header=None, names=[Exam 1, Exam 2, Admitted])
#将正负数据集分开
positive = data[data[Admitted].isin([1])]
negative
= data[data[Admitted].isin([0])]
‘‘‘
#查看分布
fig, ax = plt.subplots(figsize=(12, 8))
ax.scatter(positive[‘Exam 1‘], positive[‘Exam 2‘], s=60, c=‘b‘, marker=‘o‘, label=‘Admitted‘)
ax.scatter(negative[‘Exam 1‘], negative[‘Exam 2‘], s=50, c=‘r‘, marker=‘x‘, label=‘UnAdmitted‘)
ax.legend()
ax.set_xlabel(‘Exam 1 Score‘)
ax.set_ylabel(‘Exam 2 Score‘)
plt.show()
‘‘‘
#sigmoid函数实现
def sigmoid(h):
return 1 / (1 + np.exp(-h))
‘‘‘
#测试sigmoid函数
nums = np.arange(-10, 11, step=1)
fig, ax = plt.subplots(figsize=(12, 8))
ax.plot(nums, sigmoid(nums), ‘k‘)
plt.show()
‘‘‘
#计算损失函数值
def cost(theta, X, y):
theta
= np.matrix(theta)
X
= np.matrix(X)
y
= np.matrix(y)
part1
= np.multiply(-y, np.log(sigmoid(X * theta.T)))
part2
= np.multiply((1-y), np.log(1-sigmoid(X * theta.T)))
return np.sum(part1-part2) / len(X)
#在原矩阵第1列前加一列全1
data.insert(0, ones, 1)
cols
= data.shape[1]
X
= data.iloc[:, 0:cols-1]
y
= data.iloc[:, cols-1:cols]
X
= np.array(X.values)
y
= np.array(y.values)
theta
= np.zeros(3) #这里是一个行向量
#返回梯度向量,注意是向量
def gradient(theta, X, y):
theta
= np.matrix(theta)
X
= np.matrix(X)
y
= np.matrix(y)
parameters
= theta.ravel().shape[1]
grad
= np.zeros(parameters)
error
= sigmoid(X * theta.T) - y
grad
= error.T.dot(X)
grad
= grad / len(X)
return grad
#通过高级算法计算出最好的theta值
result = opt.fmin_tnc(func=cost, x0=theta, fprime=gradient, args=(X, y))
#print(cost(result[0], X, y))
#测试所得theta的性能
#
计算原数据集的预测情况
def predict(theta, X):
theta
= np.matrix(theta)
X
= np.matrix(X)
probability
= sigmoid(X * theta.T)
return [1 if i > 0.5 else 0 for i in probability]
theta_min
= result[0]
predictions
= predict(theta_min, X)
correct
= [1 if((a == 1 and b == 1) or(a == 0 and b == 0)) else 0 for(a, b) in zip(predictions, y)]
accuracy
= (sum(map(int, correct)) % len(correct))
print(accuracy = {0}%.format(accuracy))#训练集测试准确度89%
# 作图
theta_temp = theta_min
theta_temp
= theta_temp / theta_temp[2]
x
= np.arange(130, step=0.1)
y
= -(theta_temp[0] + theta_temp[1] * x)
#画出原点
sns.set(cOntext=notebook, color: #800000">‘ticks, font_scale=1.5)
sns.lmplot(
Exam 1, Exam 2, hue=Admitted, data=data,
size
=6,
fit_reg
=False,
scatter_kws
={"s": 25}
)
#画出分界线
plt.plot(x, y, grey)
plt.xlim(0,
130)
plt.ylim(0,
130)
plt.title(
Decision Boundary)
plt.show()

二:非线性logistic 回归(正则化)

代码如下:


import pandas as pd
import numpy as np
import scipy.optimize as opt
import matplotlib.pyplot as plt
path
= ex2data2.txt
data
= pd.read_csv(path, header=None, names=[Test 1, Test 2, Accepted])
positive
= data[data[Accepted].isin([1])]
negative
= data[data[Accepted].isin([0])]
‘‘‘
#显示原始数据的分布
fig, ax = plt.subplots(figsize=(12, 8))
ax.scatter(positive[‘Test 1‘], positive[‘Test 2‘], s=50, c=‘b‘, marker=‘o‘, label=‘Accepted‘)
ax.scatter(negative[‘Test 1‘], negative[‘Test 2‘], s=50, c=‘r‘, marker=‘x‘, label=‘Unaccepted‘)
ax.legend() #显示右上角的Accepted 和 Unaccepted标签
ax.set_xlabel(‘Test 1 Score‘)
ax.set_ylabel(‘Test 2 Score‘)
plt.show()
‘‘‘
degree
= 5
x1
= data[Test 1]
x2
= data[Test 2]
#在data的第三列插入一列全1
data.insert(3, Ones, 1)
#创建多项式特征值,最高阶为4
for i in range(1, degree):
for j in range(0, i):
data[
F + str(i) + str(j)] = np.power(x1, i-j) * np.power(x2, j)
#删除原数据中的test 1和test 2两列
data.drop(Test 1, axis=1, inplace=True)
data.drop(
Test 2, axis=1, inplace=True)
#sigmoid函数实现
def sigmoid(h):
return 1 / (1 + np.exp(-h))
def cost(theta, X, y, learnRate):
theta
= np.matrix(theta)
X
= np.matrix(X)
y
= np.matrix(y)
first
= np.multiply(-y, np.log(sigmoid(X * theta.T)))
second
= np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T)))
reg
= (learnRate / (2 * len(X))) * np.sum(np.power(theta[:, 1:theta.shape[1]], 2))
return np.sum(first - second) / len(X) + reg
learnRate
= 1
cols
= data.shape[1]
X
= data.iloc[:, 1:cols]
y
= data.iloc[:, 0:1]
X
= np.array(X)
y
= np.array(y)
theta
= np.zeros(X.shape[1])
#计算原数据集的预测情况
def predict(theta, X):
theta
= np.matrix(theta)
X
= np.matrix(X)
probability
= sigmoid(X * theta.T)
return [1 if i > 0.5 else 0 for i in probability]
def gradientReg(theta, X, y, learnRate):
theta
= np.matrix(theta)
X
= np.matrix(X)
y
= np.matrix(y)
paramates
= int(theta.ravel().shape[1])
grad
= np.zeros(paramates)
grad
= (sigmoid(X * theta.T) - y).T * X / len(X) + (learnRate / len(X)) * theta[:, i]
grad[0]
= grad[0] - (learnRate / len(X)) * theta[:, i]
return grad
result
= opt.fmin_tnc(func=cost, x0=theta, fprime=gradientReg, args=(X, y, learnRate))
print(result)
theta_min
= np.matrix(result[0])
predictions
= predict(theta_min, X)
correct
= [1 if((a == 1 and b == 1) or(a == 0 and b == 0)) else 0 for(a, b) in zip(predictions, y)]
accuracy
= (sum(map(int, correct)) % len(correct))
print(accuracy = {0}%.format(accuracy))

 


推荐阅读
  • 本文详细介绍了Java中vector的使用方法和相关知识,包括vector类的功能、构造方法和使用注意事项。通过使用vector类,可以方便地实现动态数组的功能,并且可以随意插入不同类型的对象,进行查找、插入和删除操作。这篇文章对于需要频繁进行查找、插入和删除操作的情况下,使用vector类是一个很好的选择。 ... [详细]
  • VScode格式化文档换行或不换行的设置方法
    本文介绍了在VScode中设置格式化文档换行或不换行的方法,包括使用插件和修改settings.json文件的内容。详细步骤为:找到settings.json文件,将其中的代码替换为指定的代码。 ... [详细]
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • 向QTextEdit拖放文件的方法及实现步骤
    本文介绍了在使用QTextEdit时如何实现拖放文件的功能,包括相关的方法和实现步骤。通过重写dragEnterEvent和dropEvent函数,并结合QMimeData和QUrl等类,可以轻松实现向QTextEdit拖放文件的功能。详细的代码实现和说明可以参考本文提供的示例代码。 ... [详细]
  • Linux重启网络命令实例及关机和重启示例教程
    本文介绍了Linux系统中重启网络命令的实例,以及使用不同方式关机和重启系统的示例教程。包括使用图形界面和控制台访问系统的方法,以及使用shutdown命令进行系统关机和重启的句法和用法。 ... [详细]
  • 本文讨论了在Windows 8上安装gvim中插件时出现的错误加载问题。作者将EasyMotion插件放在了正确的位置,但加载时却出现了错误。作者提供了下载链接和之前放置插件的位置,并列出了出现的错误信息。 ... [详细]
  • 也就是|小窗_卷积的特征提取与参数计算
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了卷积的特征提取与参数计算相关的知识,希望对你有一定的参考价值。Dense和Conv2D根本区别在于,Den ... [详细]
  • [大整数乘法] java代码实现
    本文介绍了使用java代码实现大整数乘法的过程,同时也涉及到大整数加法和大整数减法的计算方法。通过分治算法来提高计算效率,并对算法的时间复杂度进行了研究。详细代码实现请参考文章链接。 ... [详细]
  • ALTERTABLE通过更改、添加、除去列和约束,或者通过启用或禁用约束和触发器来更改表的定义。语法ALTERTABLEtable{[ALTERCOLUMNcolu ... [详细]
  • 本文讨论了Kotlin中扩展函数的一些惯用用法以及其合理性。作者认为在某些情况下,定义扩展函数没有意义,但官方的编码约定支持这种方式。文章还介绍了在类之外定义扩展函数的具体用法,并讨论了避免使用扩展函数的边缘情况。作者提出了对于扩展函数的合理性的质疑,并给出了自己的反驳。最后,文章强调了在编写Kotlin代码时可以自由地使用扩展函数的重要性。 ... [详细]
  • 本文介绍了机器学习手册中关于日期和时区操作的重要性以及其在实际应用中的作用。文章以一个故事为背景,描述了学童们面对老先生的教导时的反应,以及上官如在这个过程中的表现。同时,文章也提到了顾慎为对上官如的恨意以及他们之间的矛盾源于早年的结局。最后,文章强调了日期和时区操作在机器学习中的重要性,并指出了其在实际应用中的作用和意义。 ... [详细]
  • Python SQLAlchemy库的使用方法详解
    本文详细介绍了Python中使用SQLAlchemy库的方法。首先对SQLAlchemy进行了简介,包括其定义、适用的数据库类型等。然后讨论了SQLAlchemy提供的两种主要使用模式,即SQL表达式语言和ORM。针对不同的需求,给出了选择哪种模式的建议。最后,介绍了连接数据库的方法,包括创建SQLAlchemy引擎和执行SQL语句的接口。 ... [详细]
  • WhenIusepythontoapplythepymysqlmoduletoaddafieldtoatableinthemysqldatabase,itdo ... [详细]
  • 先看官方文档TheJavaTutorialshavebeenwrittenforJDK8.Examplesandpracticesdescribedinthispagedontta ... [详细]
author-avatar
雪蝴蝶的诺言forever
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有