热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

logistic回归(线性和非线性)的开发笔记

本文由编程笔记#小编为大家整理,主要介绍了logistic回归(线性和非线性)相关的知识,包括线性logistic回归的代码和数据集的分布情况。希望对你有一定的参考价值。
本文由编程笔记#小编为大家整理,主要介绍了logistic 回归(线性和非线性)相关的知识,希望对你有一定的参考价值。


一:线性logistic 回归

代码如下:


import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.optimize as opt
import seaborn as sns
#读取数据集
path = ex2data1.txt
data
= pd.read_csv(path, header=None, names=[Exam 1, Exam 2, Admitted])
#将正负数据集分开
positive = data[data[Admitted].isin([1])]
negative
= data[data[Admitted].isin([0])]
‘‘‘
#查看分布
fig, ax = plt.subplots(figsize=(12, 8))
ax.scatter(positive[‘Exam 1‘], positive[‘Exam 2‘], s=60, c=‘b‘, marker=‘o‘, label=‘Admitted‘)
ax.scatter(negative[‘Exam 1‘], negative[‘Exam 2‘], s=50, c=‘r‘, marker=‘x‘, label=‘UnAdmitted‘)
ax.legend()
ax.set_xlabel(‘Exam 1 Score‘)
ax.set_ylabel(‘Exam 2 Score‘)
plt.show()
‘‘‘
#sigmoid函数实现
def sigmoid(h):
return 1 / (1 + np.exp(-h))
‘‘‘
#测试sigmoid函数
nums = np.arange(-10, 11, step=1)
fig, ax = plt.subplots(figsize=(12, 8))
ax.plot(nums, sigmoid(nums), ‘k‘)
plt.show()
‘‘‘
#计算损失函数值
def cost(theta, X, y):
theta
= np.matrix(theta)
X
= np.matrix(X)
y
= np.matrix(y)
part1
= np.multiply(-y, np.log(sigmoid(X * theta.T)))
part2
= np.multiply((1-y), np.log(1-sigmoid(X * theta.T)))
return np.sum(part1-part2) / len(X)
#在原矩阵第1列前加一列全1
data.insert(0, ones, 1)
cols
= data.shape[1]
X
= data.iloc[:, 0:cols-1]
y
= data.iloc[:, cols-1:cols]
X
= np.array(X.values)
y
= np.array(y.values)
theta
= np.zeros(3) #这里是一个行向量
#返回梯度向量,注意是向量
def gradient(theta, X, y):
theta
= np.matrix(theta)
X
= np.matrix(X)
y
= np.matrix(y)
parameters
= theta.ravel().shape[1]
grad
= np.zeros(parameters)
error
= sigmoid(X * theta.T) - y
grad
= error.T.dot(X)
grad
= grad / len(X)
return grad
#通过高级算法计算出最好的theta值
result = opt.fmin_tnc(func=cost, x0=theta, fprime=gradient, args=(X, y))
#print(cost(result[0], X, y))
#测试所得theta的性能
#
计算原数据集的预测情况
def predict(theta, X):
theta
= np.matrix(theta)
X
= np.matrix(X)
probability
= sigmoid(X * theta.T)
return [1 if i > 0.5 else 0 for i in probability]
theta_min
= result[0]
predictions
= predict(theta_min, X)
correct
= [1 if((a == 1 and b == 1) or(a == 0 and b == 0)) else 0 for(a, b) in zip(predictions, y)]
accuracy
= (sum(map(int, correct)) % len(correct))
print(accuracy = {0}%.format(accuracy))#训练集测试准确度89%
# 作图
theta_temp = theta_min
theta_temp
= theta_temp / theta_temp[2]
x
= np.arange(130, step=0.1)
y
= -(theta_temp[0] + theta_temp[1] * x)
#画出原点
sns.set(cOntext=notebook, color: #800000">‘ticks, font_scale=1.5)
sns.lmplot(
Exam 1, Exam 2, hue=Admitted, data=data,
size
=6,
fit_reg
=False,
scatter_kws
={"s": 25}
)
#画出分界线
plt.plot(x, y, grey)
plt.xlim(0,
130)
plt.ylim(0,
130)
plt.title(
Decision Boundary)
plt.show()

二:非线性logistic 回归(正则化)

代码如下:


import pandas as pd
import numpy as np
import scipy.optimize as opt
import matplotlib.pyplot as plt
path
= ex2data2.txt
data
= pd.read_csv(path, header=None, names=[Test 1, Test 2, Accepted])
positive
= data[data[Accepted].isin([1])]
negative
= data[data[Accepted].isin([0])]
‘‘‘
#显示原始数据的分布
fig, ax = plt.subplots(figsize=(12, 8))
ax.scatter(positive[‘Test 1‘], positive[‘Test 2‘], s=50, c=‘b‘, marker=‘o‘, label=‘Accepted‘)
ax.scatter(negative[‘Test 1‘], negative[‘Test 2‘], s=50, c=‘r‘, marker=‘x‘, label=‘Unaccepted‘)
ax.legend() #显示右上角的Accepted 和 Unaccepted标签
ax.set_xlabel(‘Test 1 Score‘)
ax.set_ylabel(‘Test 2 Score‘)
plt.show()
‘‘‘
degree
= 5
x1
= data[Test 1]
x2
= data[Test 2]
#在data的第三列插入一列全1
data.insert(3, Ones, 1)
#创建多项式特征值,最高阶为4
for i in range(1, degree):
for j in range(0, i):
data[
F + str(i) + str(j)] = np.power(x1, i-j) * np.power(x2, j)
#删除原数据中的test 1和test 2两列
data.drop(Test 1, axis=1, inplace=True)
data.drop(
Test 2, axis=1, inplace=True)
#sigmoid函数实现
def sigmoid(h):
return 1 / (1 + np.exp(-h))
def cost(theta, X, y, learnRate):
theta
= np.matrix(theta)
X
= np.matrix(X)
y
= np.matrix(y)
first
= np.multiply(-y, np.log(sigmoid(X * theta.T)))
second
= np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T)))
reg
= (learnRate / (2 * len(X))) * np.sum(np.power(theta[:, 1:theta.shape[1]], 2))
return np.sum(first - second) / len(X) + reg
learnRate
= 1
cols
= data.shape[1]
X
= data.iloc[:, 1:cols]
y
= data.iloc[:, 0:1]
X
= np.array(X)
y
= np.array(y)
theta
= np.zeros(X.shape[1])
#计算原数据集的预测情况
def predict(theta, X):
theta
= np.matrix(theta)
X
= np.matrix(X)
probability
= sigmoid(X * theta.T)
return [1 if i > 0.5 else 0 for i in probability]
def gradientReg(theta, X, y, learnRate):
theta
= np.matrix(theta)
X
= np.matrix(X)
y
= np.matrix(y)
paramates
= int(theta.ravel().shape[1])
grad
= np.zeros(paramates)
grad
= (sigmoid(X * theta.T) - y).T * X / len(X) + (learnRate / len(X)) * theta[:, i]
grad[0]
= grad[0] - (learnRate / len(X)) * theta[:, i]
return grad
result
= opt.fmin_tnc(func=cost, x0=theta, fprime=gradientReg, args=(X, y, learnRate))
print(result)
theta_min
= np.matrix(result[0])
predictions
= predict(theta_min, X)
correct
= [1 if((a == 1 and b == 1) or(a == 0 and b == 0)) else 0 for(a, b) in zip(predictions, y)]
accuracy
= (sum(map(int, correct)) % len(correct))
print(accuracy = {0}%.format(accuracy))

 


推荐阅读
  • 上图是InnoDB存储引擎的结构。1、缓冲池InnoDB存储引擎是基于磁盘存储的,并将其中的记录按照页的方式进行管理。因此可以看作是基于磁盘的数据库系统。在数据库系统中,由于CPU速度 ... [详细]
  • Oracle分析函数first_value()和last_value()的用法及原理
    本文介绍了Oracle分析函数first_value()和last_value()的用法和原理,以及在查询销售记录日期和部门中的应用。通过示例和解释,详细说明了first_value()和last_value()的功能和不同之处。同时,对于last_value()的结果出现不一样的情况进行了解释,并提供了理解last_value()默认统计范围的方法。该文对于使用Oracle分析函数的开发人员和数据库管理员具有参考价值。 ... [详细]
  • EPPlus绘制刻度线的方法及示例代码
    本文介绍了使用EPPlus绘制刻度线的方法,并提供了示例代码。通过ExcelPackage类和List对象,可以实现在Excel中绘制刻度线的功能。具体的方法和示例代码在文章中进行了详细的介绍和演示。 ... [详细]
  • 动量|收益率_基于MT策略的实战分析
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了基于MT策略的实战分析相关的知识,希望对你有一定的参考价值。基于MT策略的实战分析 ... [详细]
  • CSS3选择器的使用方法详解,提高Web开发效率和精准度
    本文详细介绍了CSS3新增的选择器方法,包括属性选择器的使用。通过CSS3选择器,可以提高Web开发的效率和精准度,使得查找元素更加方便和快捷。同时,本文还对属性选择器的各种用法进行了详细解释,并给出了相应的代码示例。通过学习本文,读者可以更好地掌握CSS3选择器的使用方法,提升自己的Web开发能力。 ... [详细]
  • 本文介绍了一个在线急等问题解决方法,即如何统计数据库中某个字段下的所有数据,并将结果显示在文本框里。作者提到了自己是一个菜鸟,希望能够得到帮助。作者使用的是ACCESS数据库,并且给出了一个例子,希望得到的结果是560。作者还提到自己已经尝试了使用"select sum(字段2) from 表名"的语句,得到的结果是650,但不知道如何得到560。希望能够得到解决方案。 ... [详细]
  • 006_Redis的List数据类型
    1.List类型是一个链表结构的集合,主要功能有push,pop,获取元素等。List类型是一个双端链表的结构,我们可以通过相关操作进行集合的头部或者尾部添加删除元素,List的设 ... [详细]
  • 前景:当UI一个查询条件为多项选择,或录入多个条件的时候,比如查询所有名称里面包含以下动态条件,需要模糊查询里面每一项时比如是这样一个数组条件:newstring[]{兴业银行, ... [详细]
  • ASP.NET2.0数据教程之十四:使用FormView的模板
    本文介绍了在ASP.NET 2.0中使用FormView控件来实现自定义的显示外观,与GridView和DetailsView不同,FormView使用模板来呈现,可以实现不规则的外观呈现。同时还介绍了TemplateField的用法和FormView与DetailsView的区别。 ... [详细]
  • 本文介绍了机器学习手册中关于日期和时区操作的重要性以及其在实际应用中的作用。文章以一个故事为背景,描述了学童们面对老先生的教导时的反应,以及上官如在这个过程中的表现。同时,文章也提到了顾慎为对上官如的恨意以及他们之间的矛盾源于早年的结局。最后,文章强调了日期和时区操作在机器学习中的重要性,并指出了其在实际应用中的作用和意义。 ... [详细]
  • 本文讨论了如何使用IF函数从基于有限输入列表的有限输出列表中获取输出,并提出了是否有更快/更有效的执行代码的方法。作者希望了解是否有办法缩短代码,并从自我开发的角度来看是否有更好的方法。提供的代码可以按原样工作,但作者想知道是否有更好的方法来执行这样的任务。 ... [详细]
  • 本文介绍了Python爬虫技术基础篇面向对象高级编程(中)中的多重继承概念。通过继承,子类可以扩展父类的功能。文章以动物类层次的设计为例,讨论了按照不同分类方式设计类层次的复杂性和多重继承的优势。最后给出了哺乳动物和鸟类的设计示例,以及能跑、能飞、宠物类和非宠物类的增加对类数量的影响。 ... [详细]
  • 第四章高阶函数(参数传递、高阶函数、lambda表达式)(python进阶)的讲解和应用
    本文主要讲解了第四章高阶函数(参数传递、高阶函数、lambda表达式)的相关知识,包括函数参数传递机制和赋值机制、引用传递的概念和应用、默认参数的定义和使用等内容。同时介绍了高阶函数和lambda表达式的概念,并给出了一些实例代码进行演示。对于想要进一步提升python编程能力的读者来说,本文将是一个不错的学习资料。 ... [详细]
  • 基于dlib的人脸68特征点提取(眨眼张嘴检测)python版本
    文章目录引言开发环境和库流程设计张嘴和闭眼的检测引言(1)利用Dlib官方训练好的模型“shape_predictor_68_face_landmarks.dat”进行68个点标定 ... [详细]
  • Oracle优化新常态的五大禁止及其性能隐患
    本文介绍了Oracle优化新常态中的五大禁止措施,包括禁止外键、禁止视图、禁止触发器、禁止存储过程和禁止JOB,并分析了这些禁止措施可能带来的性能隐患。文章还讨论了这些禁止措施在C/S架构和B/S架构中的不同应用情况,并提出了解决方案。 ... [详细]
author-avatar
雪蝴蝶的诺言forever
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有