热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

hdu4888RedrawBeautifulDrawings

本文介绍了一道网络流题目hdu4888RedrawBeautifulDrawings的解题思路。题目要求以行和列作为结点建图,并通过最大流算法判断是否有解以及是否唯一。文章详细介绍了建图和算法的过程,并强调在dfs过程中要进行回溯。

14多校第二题

网络流   分别以行,列作为结点建图

i行表示的结点到j列表示的结点的流量便是(i, j)的值

跑遍最大流   若满流了便是有解   判断是否unique  就是在残余网络中dfs,走可以增加流量的边,找到环即不唯一

dfs的时候一定要回溯!!。。


#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;


//LOOP
#define FF(i, a, b) for(int i = (a); i <(b); ++i)
#define FE(i, a, b) for(int i = (a); i <= (b); ++i)
#define FED(i, b, a) for(int i = (b); i>= (a); --i)
#define REP(i, N) for(int i = 0; i <(N); ++i)
#define CLR(A,value) memset(A,value,sizeof(A))
#define FC(it, c) for(__typeof((c).begin()) it = (c).begin(); it != (c).end(); it++)


//OTHER
#define SZ(V) (int)V.size()
#define PB push_back
#define MP make_pair
#define all(x) (x).begin(),(x).end()


//INPUT
#define RI(n) scanf("%d", &n)
#define RII(n, m) scanf("%d%d", &n, &m)
#define RIII(n, m, k) scanf("%d%d%d", &n, &m, &k)
#define RIV(n, m, k, p) scanf("%d%d%d%d", &n, &m, &k, &p)
#define RV(n, m, k, p, q) scanf("%d%d%d%d%d", &n, &m, &k, &p, &q)
#define RS(s) scanf("%s", s)


//OUTPUT
#define WI(n) printf("%d\n", n)
#define WS(n) printf("%s\n", n)


//debug
//#define online_judge
#ifndef online_judge
#define dt(a)  <<(#a) <<"=" < VI;
const double eps = 1e-9;
const int MOD = 1000000007;
const double PI = acos(-1.0);
const int INF = 0x3f3f3f3f;
const int maxn = 900;

bool use[maxn];
struct Edge{
    int from, to, cap, flow;
};
int MAX;

struct Dinic{
    int n, m ,s, t;
    vector edges;
    VI G[maxn];
    bool vis[maxn];
    int d[maxn];
    int cur[maxn]   ;

    void init(int nn)
    {
        this->n = nn;
        REP(i, n) G[i].clear();
        edges.clear();
    }

    void addEdge(int from, int to, int cap)
    {
        edges.PB((Edge){from, to, cap, 0});
        edges.PB((Edge){to, from, 0, 0});
        m = edges.size();
        G[from].PB(m - 2);
        G[to].PB(m - 1);
    }

    bool bfs()
    {
        CLR(vis, 0);
        queue Q;
        Q.push(s);
        d[s] = 0;
        vis[s] = 1;
        while (!Q.empty())
        {
            int x = Q.front();
            Q.pop();
            REP(i, G[x].size())
            {
                Edge& e = edges[G[x][i]];
                if (!vis[e.to] && e.cap > e.flow)
                {
                    vis[e.to] = 1;
                    d[e.to] = d[x] + 1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }

    int dfs(int x, int a)
    {
        if (x == t || a == 0)   return a;
        int flow = 0, f;
        for (int& i = cur[x]; i  0)
            {
                e.flow += f;
                edges[G[x][i] ^ 1].flow -= f;
                flow += f;
                a -= f;
                if (a == 0) break;
            }
        }
        return flow;
    }

    int maxflow(int s, int t)
    {
        this-> s = s, this-> t = t;
        int flow = 0;
        while (bfs())
        {
            CLR(cur, 0);
            flow += dfs(s, INF);
        }
        return flow;
    }

    bool visit(int u, int fa)
    {
        if (u == 0 || u == MAX) return false;
        use[u] = 1;
        REP(i, G[u].size())
        {
            Edge& e = edges[G[u][i]];
//            debugII(e.to, use[e.to]);
            if (e.to != fa && e.cap > e.flow)
                if (use[e.to] || visit(e.to, u))
                    return true;
        }
        use[u] = 0;
        return false;
    }

}di;

int main()
{
    int n, m, k;
    while (~RIII(n, m, k))
    {
        int x, sum1 = 0, sum2 = 0;
        MAX = n + m + 1;
        di.init(n + m + 2);
        FE(i, 1, n)
        {
            RI(x);
            sum1 += x;
            di.addEdge(0, i, x);
        }
        FE(i, n + 1, n + m)
        {
            RI(x);
            sum2 += x;
            di.addEdge(i, n + m + 1, x);
        }
        FE(i, 1, n)
            FE(j, n + 1, n + m)
                di.addEdge(i, j, k);
        if (sum2 != sum1)
        {
            puts("Impossible");
            continue;
        }
        int ans = di.maxflow(0, n + m + 1);
        if (ans = di.edges.size())
                printf("\n");
            else
                printf(" ");
        }
        end:;
    }
    return 0;
}


hdu4888 Redraw Beautiful Drawings,,

hdu4888 Redraw Beautiful Drawings


推荐阅读
  • 动态规划算法的基本步骤及最长递增子序列问题详解
    本文详细介绍了动态规划算法的基本步骤,包括划分阶段、选择状态、决策和状态转移方程,并以最长递增子序列问题为例进行了详细解析。动态规划算法的有效性依赖于问题本身所具有的最优子结构性质和子问题重叠性质。通过将子问题的解保存在一个表中,在以后尽可能多地利用这些子问题的解,从而提高算法的效率。 ... [详细]
  • HDU 2372 El Dorado(DP)的最长上升子序列长度求解方法
    本文介绍了解决HDU 2372 El Dorado问题的一种动态规划方法,通过循环k的方式求解最长上升子序列的长度。具体实现过程包括初始化dp数组、读取数列、计算最长上升子序列长度等步骤。 ... [详细]
  • 本文介绍了lua语言中闭包的特性及其在模式匹配、日期处理、编译和模块化等方面的应用。lua中的闭包是严格遵循词法定界的第一类值,函数可以作为变量自由传递,也可以作为参数传递给其他函数。这些特性使得lua语言具有极大的灵活性,为程序开发带来了便利。 ... [详细]
  • 基于layUI的图片上传前预览功能的2种实现方式
    本文介绍了基于layUI的图片上传前预览功能的两种实现方式:一种是使用blob+FileReader,另一种是使用layUI自带的参数。通过选择文件后点击文件名,在页面中间弹窗内预览图片。其中,layUI自带的参数实现了图片预览功能。该功能依赖于layUI的上传模块,并使用了blob和FileReader来读取本地文件并获取图像的base64编码。点击文件名时会执行See()函数。摘要长度为169字。 ... [详细]
  • 本文介绍了使用Java实现大数乘法的分治算法,包括输入数据的处理、普通大数乘法的结果和Karatsuba大数乘法的结果。通过改变long类型可以适应不同范围的大数乘法计算。 ... [详细]
  • 本文讨论了如何优化解决hdu 1003 java题目的动态规划方法,通过分析加法规则和最大和的性质,提出了一种优化的思路。具体方法是,当从1加到n为负时,即sum(1,n)sum(n,s),可以继续加法计算。同时,还考虑了两种特殊情况:都是负数的情况和有0的情况。最后,通过使用Scanner类来获取输入数据。 ... [详细]
  • 本文介绍了C#中数据集DataSet对象的使用及相关方法详解,包括DataSet对象的概述、与数据关系对象的互联、Rows集合和Columns集合的组成,以及DataSet对象常用的方法之一——Merge方法的使用。通过本文的阅读,读者可以了解到DataSet对象在C#中的重要性和使用方法。 ... [详细]
  • 本文介绍了OC学习笔记中的@property和@synthesize,包括属性的定义和合成的使用方法。通过示例代码详细讲解了@property和@synthesize的作用和用法。 ... [详细]
  • 本文详细介绍了Linux中进程控制块PCBtask_struct结构体的结构和作用,包括进程状态、进程号、待处理信号、进程地址空间、调度标志、锁深度、基本时间片、调度策略以及内存管理信息等方面的内容。阅读本文可以更加深入地了解Linux进程管理的原理和机制。 ... [详细]
  • 1,关于死锁的理解死锁,我们可以简单的理解为是两个线程同时使用同一资源,两个线程又得不到相应的资源而造成永无相互等待的情况。 2,模拟死锁背景介绍:我们创建一个朋友 ... [详细]
  • 《数据结构》学习笔记3——串匹配算法性能评估
    本文主要讨论串匹配算法的性能评估,包括模式匹配、字符种类数量、算法复杂度等内容。通过借助C++中的头文件和库,可以实现对串的匹配操作。其中蛮力算法的复杂度为O(m*n),通过随机取出长度为m的子串作为模式P,在文本T中进行匹配,统计平均复杂度。对于成功和失败的匹配分别进行测试,分析其平均复杂度。详情请参考相关学习资源。 ... [详细]
  • 高质量SQL书写的30条建议
    本文提供了30条关于优化SQL的建议,包括避免使用select *,使用具体字段,以及使用limit 1等。这些建议是基于实际开发经验总结出来的,旨在帮助读者优化SQL查询。 ... [详细]
  • 本文内容为asp.net微信公众平台开发的目录汇总,包括数据库设计、多层架构框架搭建和入口实现、微信消息封装及反射赋值、关注事件、用户记录、回复文本消息、图文消息、服务搭建(接入)、自定义菜单等。同时提供了示例代码和相关的后台管理功能。内容涵盖了多个方面,适合综合运用。 ... [详细]
  • 本文讨论了Alink回归预测的不完善问题,指出目前主要针对Python做案例,对其他语言支持不足。同时介绍了pom.xml文件的基本结构和使用方法,以及Maven的相关知识。最后,对Alink回归预测的未来发展提出了期待。 ... [详细]
  • Java验证码——kaptcha的使用配置及样式
    本文介绍了如何使用kaptcha库来实现Java验证码的配置和样式设置,包括pom.xml的依赖配置和web.xml中servlet的配置。 ... [详细]
author-avatar
npa3689305
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有