热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

康托展开和逆康托展开(转)

康托展开和逆康托展开简述康托展开是一个全排列到一个自然数的双射,常用于构建hash表时的空间压缩。设有n个数(1,2,3,4,…,n),可以有组成不同(n!种)的排列组合,康托展开

康托展开和逆康托展开

简述
康托展开是一个全排列到一个自然数的双射,常用于构建hash表时的空间压缩。设有n个数(1,2,3,4,…,n),可以有组成不同(n!种)的排列组合,康托展开表示的就是是当前排列组合在n个不同元素的全排列中的名次。

原理
X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0!
其中, a[i]为整数,并且0 <= a[i] <= i, 0 <= i

例如有3个数(1,2,3),则其排列组合及其相应的康托展开值如下:

技术分享图片

比如其中的 231:

想要计算排在它前面的排列组合数目(123,132,213),则可以转化为计算比首位小即小于2的所有排列「1 * 2!」,首位相等为2并且第二位小于3的所有排列「1 * 1!」,前两位相等为23并且第三位小于1的所有排列(0 * 0!)的和即可,康托展开为:1 * 2!+1 * 1+0 * 0=3。
所以小于231的组合有3个,所以231的名次是4。

康托展开
再举个例子说明。
在(1,2,3,4,5)5个数的排列组合中,计算 34152的康托展开值。

首位是3,则小于3的数有两个,为1和2,a[5]=2,则首位小于3的所有排列组合为 a[0]*(5-1)!
第二位是4,则小于4的数有两个,为1和2,注意这里3并不能算,因为3已经在第一位,所以其实计算的是在第二位之后小于4的个数。因此a[4]=2
第三位是1,则在其之后小于1的数有0个,所以a[3]=0
第四位是5,则在其之后小于5的数有1个,为2,所以a[2]=1
最后一位就不用计算啦,因为在它之后已经没有数了,所以a[1]固定为0
根据公式:
X = 2 * 4! + 2 * 3! + 0 * 2! + 1 * 1! + 0 * 0! = 2 * 24 + 2 * 6 + 1 = 61
所以比 34152 小的组合有61个,即34152是排第62。
具体代码实现如下:(假设排列数小于10个)

static const int FAC[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880}; // 阶乘
int cantor(int *a, int n)
{
int x = 0;
for (int i = 0; i i) {
int smaller = 0; // 在当前位之后小于其的个数
for (int j = i + 1; j j) {
if (a[j] < a[i])
smaller
++;
}
x
+= FAC[n - i - 1] * smaller; // 康托展开累加
}
return x; // 康托展开值
}

逆康托展开
一开始已经提过了,康托展开是一个全排列到一个自然数的双射,因此是可逆的。即对于上述例子,在(1,2,3,4,5)给出61可以算出起排列组合为 34152。由上述的计算过程可以容易的逆推回来,具体过程如下:

用 61 / 4! = 2余13,说明a[5]=2,说明比首位小的数有2个,所以首位为3。
用 13 / 3! = 2余1,说明a[4]=2,说明在第二位之后小于第二位的数有2个,所以第二位为4。
用 1 / 2! = 0余1,说明a[3]=0,说明在第三位之后没有小于第三位的数,所以第三位为1。
用 1 / 1! = 1余0,说明a[2]=1,说明在第二位之后小于第四位的数有1个,所以第四位为5。
最后一位自然就是剩下的数2啦。
通过以上分析,所求排列组合为 34152。
具体代码实现如下:(假设排列数小于10个

static const int FAC[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880}; // 阶乘
//康托展开逆运算
void decantor(int x, int n)
{
vector
<int> v; // 存放当前可选数
vector<int> a; // 所求排列组合
for(int i=1;i<=n;i++)
v.push_back(i);
for(int i=m;i>=1;i--)
{
int r = x % FAC[i-1];
int t = x / FAC[i-1];
x
= r;
sort(v.begin(),v.end());
// 从小到大排序
a.push_back(v[t]); // 剩余数里第t+1个数为当前位
v.erase(v.begin()+t); // 移除选做当前位的数
}
}

应用
应用最多的场景也是上述讲的它的特性。

给定一个自然数集合组合一个全排列,所其中的一个排列组合在全排列中从小到大排第几位。
在上述例子中,在(1,2,3,4,5)的全排列中,34152的排列组合排在第62位。

反过来,就是逆康托展开,求在一个全排列中,从小到大的第n个全排列是多少。
比如求在(1,2,3,4,5)的全排列中,第62个排列组合是34152。[注意具体计算中,要先 -1 才是其康托展开的值。]

另外康托展开也是一个数组到一个数的映射,因此也是可用于hash,用于空间压缩。比如在保存一个序列,我们可能需要开一个数组,如果能够把它映射成一个自然数, 则只需要保存一个整数,大大压缩空间。比如八数码问题。


推荐阅读
  • Redis底层数据结构之压缩列表的介绍及实现原理
    本文介绍了Redis底层数据结构之压缩列表的概念、实现原理以及使用场景。压缩列表是Redis为了节约内存而开发的一种顺序数据结构,由特殊编码的连续内存块组成。文章详细解释了压缩列表的构成和各个属性的含义,以及如何通过指针来计算表尾节点的地址。压缩列表适用于列表键和哈希键中只包含少量小整数值和短字符串的情况。通过使用压缩列表,可以有效减少内存占用,提升Redis的性能。 ... [详细]
  • 1,关于死锁的理解死锁,我们可以简单的理解为是两个线程同时使用同一资源,两个线程又得不到相应的资源而造成永无相互等待的情况。 2,模拟死锁背景介绍:我们创建一个朋友 ... [详细]
  • 动态规划算法的基本步骤及最长递增子序列问题详解
    本文详细介绍了动态规划算法的基本步骤,包括划分阶段、选择状态、决策和状态转移方程,并以最长递增子序列问题为例进行了详细解析。动态规划算法的有效性依赖于问题本身所具有的最优子结构性质和子问题重叠性质。通过将子问题的解保存在一个表中,在以后尽可能多地利用这些子问题的解,从而提高算法的效率。 ... [详细]
  • 本文介绍了如何使用PHP向系统日历中添加事件的方法,通过使用PHP技术可以实现自动添加事件的功能,从而实现全局通知系统和迅速记录工具的自动化。同时还提到了系统exchange自带的日历具有同步感的特点,以及使用web技术实现自动添加事件的优势。 ... [详细]
  • 基于layUI的图片上传前预览功能的2种实现方式
    本文介绍了基于layUI的图片上传前预览功能的两种实现方式:一种是使用blob+FileReader,另一种是使用layUI自带的参数。通过选择文件后点击文件名,在页面中间弹窗内预览图片。其中,layUI自带的参数实现了图片预览功能。该功能依赖于layUI的上传模块,并使用了blob和FileReader来读取本地文件并获取图像的base64编码。点击文件名时会执行See()函数。摘要长度为169字。 ... [详细]
  • 本文介绍了使用Java实现大数乘法的分治算法,包括输入数据的处理、普通大数乘法的结果和Karatsuba大数乘法的结果。通过改变long类型可以适应不同范围的大数乘法计算。 ... [详细]
  • HDU 2372 El Dorado(DP)的最长上升子序列长度求解方法
    本文介绍了解决HDU 2372 El Dorado问题的一种动态规划方法,通过循环k的方式求解最长上升子序列的长度。具体实现过程包括初始化dp数组、读取数列、计算最长上升子序列长度等步骤。 ... [详细]
  • 本文讨论了如何优化解决hdu 1003 java题目的动态规划方法,通过分析加法规则和最大和的性质,提出了一种优化的思路。具体方法是,当从1加到n为负时,即sum(1,n)sum(n,s),可以继续加法计算。同时,还考虑了两种特殊情况:都是负数的情况和有0的情况。最后,通过使用Scanner类来获取输入数据。 ... [详细]
  • 本文介绍了C#中数据集DataSet对象的使用及相关方法详解,包括DataSet对象的概述、与数据关系对象的互联、Rows集合和Columns集合的组成,以及DataSet对象常用的方法之一——Merge方法的使用。通过本文的阅读,读者可以了解到DataSet对象在C#中的重要性和使用方法。 ... [详细]
  • 本文介绍了OC学习笔记中的@property和@synthesize,包括属性的定义和合成的使用方法。通过示例代码详细讲解了@property和@synthesize的作用和用法。 ... [详细]
  • 《数据结构》学习笔记3——串匹配算法性能评估
    本文主要讨论串匹配算法的性能评估,包括模式匹配、字符种类数量、算法复杂度等内容。通过借助C++中的头文件和库,可以实现对串的匹配操作。其中蛮力算法的复杂度为O(m*n),通过随机取出长度为m的子串作为模式P,在文本T中进行匹配,统计平均复杂度。对于成功和失败的匹配分别进行测试,分析其平均复杂度。详情请参考相关学习资源。 ... [详细]
  • 高质量SQL书写的30条建议
    本文提供了30条关于优化SQL的建议,包括避免使用select *,使用具体字段,以及使用limit 1等。这些建议是基于实际开发经验总结出来的,旨在帮助读者优化SQL查询。 ... [详细]
  • 猜字母游戏
    猜字母游戏猜字母游戏——设计数据结构猜字母游戏——设计程序结构猜字母游戏——实现字母生成方法猜字母游戏——实现字母检测方法猜字母游戏——实现主方法1猜字母游戏——设计数据结构1.1 ... [详细]
  • 在编写业务代码时,常常会遇到复杂的业务逻辑导致代码冗长混乱的情况。为了解决这个问题,可以利用中间件模式来简化代码逻辑。中间件模式可以帮助我们更好地设计架构和代码,提高代码质量。本文介绍了中间件模式的基本概念和用法。 ... [详细]
  • 李逍遥寻找仙药的迷阵之旅
    本文讲述了少年李逍遥为了救治婶婶的病情,前往仙灵岛寻找仙药的故事。他需要穿越一个由M×N个方格组成的迷阵,有些方格内有怪物,有些方格是安全的。李逍遥需要避开有怪物的方格,并经过最少的方格,找到仙药。在寻找的过程中,他还会遇到神秘人物。本文提供了一个迷阵样例及李逍遥找到仙药的路线。 ... [详细]
author-avatar
美好时光33_862
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有