热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

tarjan求点双联通分量(割点)

之前一直对tarjan算法的这几种不同应用比较混淆我太弱啦!被BLO暴虐滚过来用tarjan求点双,很多神犇都给出了比较详细的解释和证明,在这里就不讲了(其实是这只蒟蒻根本不会orz)这里放一下

之前一直对tarjan算法的这几种不同应用比较混淆...我太弱啦!

被BLO暴虐滚过来

用tarjan求点双,很多神犇都给出了比较详细的解释和证明,在这里就不讲了(其实是这只蒟蒻根本不会orz)

这里放一下定义

这篇博客主要讲一讲求割点,点双的板子实现以及详细解释

先yy这样一道题:

有n个点,m条边,保证给出的是一个联通图,求割点

(真·最裸割点)

这道题就可以用下面这份代码实现

 

#pragma GCC optimize("O2")
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define N 100001
typedef long long ll;
const int inf=0x3fffffff;
const int maxn=2017;
using namespace std;
inline int read()
{
int f=1,x=0;char ch=getchar();
while(ch>'9'|ch<'0')
{
if(ch=='-')
f=-1;
ch=getchar();
}
while(ch<='9'&&ch>='0')
{
x=(x<<3)+(x<<1)+ch-'0';
ch=getchar();
}
return f*x;
}
struct tsdl{
int to,w,next ;
} edge[N*4];
int tot,head[N],dfn[N],low[N],fa[N],son[N],size[N];
bool iscut[N];
void add(int ui,int vi)
{
edge[++tot].next=head[ui];
edge[tot].to=vi;
head[ui]=tot;
}
void tarjan(int x)
{
dfn[x]=low[x]=++tot;
size[x]=1;
for(int i=head[x];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(v==fa[x])continue;
if(!dfn[v])
{
son[x]++;//x的子树++
fa[v]=x;//v的父亲是x
tarjan(v);
size[x]+=size[v];//x所连节点的个数
low[x]=min(low[x],low[v]);
if(dfn[x]<=low[v])
{
iscut[x]=1;//找到割点
}
}
else low[x]=min(low[x],dfn[v]);
}
if(fa[x]==0&&son[x]<=1)
iscut[x]=0;//根节点,特判处理
}
int main()
{
memset(head,-1,sizeof(head));
int n=read(),m=read();
for(int i=1;i<=m;i++)
{
int u=read(),v=read();
add(u,v);
add(v,u);
}
for(int i=1;i<=n;i++)
{
if(!dfn[i])tarjan(i);
}
for(int i=1;i<=n;i++)
if(iscut[i])cout<}

 

 

例如我们输入

5 5
1 2
2 3
1 3
3 4
4 5

程序完美の输出了 3,4

是不是很棒啊x

那么我们要统计点双的数量要怎么处理呢?

显然能发现,我们求出一个割点之后,被割点分成的几部分都能分别与这个割点组成一个点双

那么我们只需要统计每个割点被访问次数即可

更改之后的代码:

 

#pragma GCC optimize("O2")
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define N 100001
typedef long long ll;
const int inf=0x3fffffff;
const int maxn=2017;
using namespace std;
inline int read()
{
int f=1,x=0;char ch=getchar();
while(ch>'9'|ch<'0')
{
if(ch=='-')
f=-1;
ch=getchar();
}
while(ch<='9'&&ch>='0')
{
x=(x<<3)+(x<<1)+ch-'0';
ch=getchar();
}
return f*x;
}
struct tsdl{
int to,w,next ;
} edge[N*4];
int tot,head[N],dfn[N],low[N],fa[N],son[N],size[N];
bool iscut[N];
void add(int ui,int vi)
{
edge[++tot].next=head[ui];
edge[tot].to=vi;
head[ui]=tot;
}
int ans;
void tarjan(int x)
{
if(iscut[x])ans++;//统计x1
dfn[x]=low[x]=++tot;
size[x]=1;
int tmp=0;
for(int i=head[x];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(edge[i].to==fa[x])continue;
if(!dfn[v])
{
son[x]++;
fa[v]=x;
tarjan(v);
size[x]+=size[v];
low[x]=min(low[x],low[v]);
if(dfn[x]<=low[v])
{
iscut[x]=1;//找到割点
ans++;//统计x2
}
}
else low[x]=min(low[x],dfn[v]);
}
if(fa[x]==0&&son[x]<=1)
iscut[x]=0;//根节点,特判处理
}
int main()
{
memset(head,-1,sizeof(head));
int n=read(),m=read();
for(int i=1;i<=m;i++)
{
int u=read(),v=read();
add(u,v);
add(v,u);
}
for(int i=1;i<=n;i++)
{
if(!dfn[i])tarjan(i);
}
for(int i=1;i<=n;i++)
if(iscut[i])cout<cout<}

输出就是直接

 

当然对他做一点小小的改动也可以实现求桥..

只需要对于每次记录iscut  改为记录二维数组cutedge[x][v]即可

需要注意的是 这里的条件不同于求割点的小于等于 这里需要low[v]严格大于dfn[x]


推荐阅读
  • 本文主要解析了Open judge C16H问题中涉及到的Magical Balls的快速幂和逆元算法,并给出了问题的解析和解决方法。详细介绍了问题的背景和规则,并给出了相应的算法解析和实现步骤。通过本文的解析,读者可以更好地理解和解决Open judge C16H问题中的Magical Balls部分。 ... [详细]
  • 本文讨论了使用差分约束系统求解House Man跳跃问题的思路与方法。给定一组不同高度,要求从最低点跳跃到最高点,每次跳跃的距离不超过D,并且不能改变给定的顺序。通过建立差分约束系统,将问题转化为图的建立和查询距离的问题。文章详细介绍了建立约束条件的方法,并使用SPFA算法判环并输出结果。同时还讨论了建边方向和跳跃顺序的关系。 ... [详细]
  • 本文介绍了解决二叉树层序创建问题的方法。通过使用队列结构体和二叉树结构体,实现了入队和出队操作,并提供了判断队列是否为空的函数。详细介绍了解决该问题的步骤和流程。 ... [详细]
  • 本文讨论了一个数列求和问题,该数列按照一定规律生成。通过观察数列的规律,我们可以得出求解该问题的算法。具体算法为计算前n项i*f[i]的和,其中f[i]表示数列中有i个数字。根据参考的思路,我们可以将算法的时间复杂度控制在O(n),即计算到5e5即可满足1e9的要求。 ... [详细]
  • 李逍遥寻找仙药的迷阵之旅
    本文讲述了少年李逍遥为了救治婶婶的病情,前往仙灵岛寻找仙药的故事。他需要穿越一个由M×N个方格组成的迷阵,有些方格内有怪物,有些方格是安全的。李逍遥需要避开有怪物的方格,并经过最少的方格,找到仙药。在寻找的过程中,他还会遇到神秘人物。本文提供了一个迷阵样例及李逍遥找到仙药的路线。 ... [详细]
  • 本文介绍了Codeforces Round #321 (Div. 2)比赛中的问题Kefa and Dishes,通过状压和spfa算法解决了这个问题。给定一个有向图,求在不超过m步的情况下,能获得的最大权值和。点不能重复走。文章详细介绍了问题的题意、解题思路和代码实现。 ... [详细]
  • 本文介绍了设计师伊振华受邀参与沈阳市智慧城市运行管理中心项目的整体设计,并以数字赋能和创新驱动高质量发展的理念,建设了集成、智慧、高效的一体化城市综合管理平台,促进了城市的数字化转型。该中心被称为当代城市的智能心脏,为沈阳市的智慧城市建设做出了重要贡献。 ... [详细]
  • 本文介绍了OC学习笔记中的@property和@synthesize,包括属性的定义和合成的使用方法。通过示例代码详细讲解了@property和@synthesize的作用和用法。 ... [详细]
  • 本文介绍了一种划分和计数油田地块的方法。根据给定的条件,通过遍历和DFS算法,将符合条件的地块标记为不符合条件的地块,并进行计数。同时,还介绍了如何判断点是否在给定范围内的方法。 ... [详细]
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
  • 计算机存储系统的层次结构及其优势
    本文介绍了计算机存储系统的层次结构,包括高速缓存、主存储器和辅助存储器三个层次。通过分层存储数据可以提高程序的执行效率。计算机存储系统的层次结构将各种不同存储容量、存取速度和价格的存储器有机组合成整体,形成可寻址存储空间比主存储器空间大得多的存储整体。由于辅助存储器容量大、价格低,使得整体存储系统的平均价格降低。同时,高速缓存的存取速度可以和CPU的工作速度相匹配,进一步提高程序执行效率。 ... [详细]
  • Python正则表达式学习记录及常用方法
    本文记录了学习Python正则表达式的过程,介绍了re模块的常用方法re.search,并解释了rawstring的作用。正则表达式是一种方便检查字符串匹配模式的工具,通过本文的学习可以掌握Python中使用正则表达式的基本方法。 ... [详细]
  • 《数据结构》学习笔记3——串匹配算法性能评估
    本文主要讨论串匹配算法的性能评估,包括模式匹配、字符种类数量、算法复杂度等内容。通过借助C++中的头文件和库,可以实现对串的匹配操作。其中蛮力算法的复杂度为O(m*n),通过随机取出长度为m的子串作为模式P,在文本T中进行匹配,统计平均复杂度。对于成功和失败的匹配分别进行测试,分析其平均复杂度。详情请参考相关学习资源。 ... [详细]
  • Android工程师面试准备及设计模式使用场景
    本文介绍了Android工程师面试准备的经验,包括面试流程和重点准备内容。同时,还介绍了建造者模式的使用场景,以及在Android开发中的具体应用。 ... [详细]
  • 重入锁(ReentrantLock)学习及实现原理
    本文介绍了重入锁(ReentrantLock)的学习及实现原理。在学习synchronized的基础上,重入锁提供了更多的灵活性和功能。文章详细介绍了重入锁的特性、使用方法和实现原理,并提供了类图和测试代码供读者参考。重入锁支持重入和公平与非公平两种实现方式,通过对比和分析,读者可以更好地理解和应用重入锁。 ... [详细]
author-avatar
黄雅萱介芳
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有