热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

JVM的方法执行引擎模板表

Java的模板解析执行需要模板表与转发表的支持,而这2个表中的数据在HotSpot虚拟机启动时就会初始化。这一篇首先介绍模板表。在启动虚拟机阶段会调用init_globals()方

Java的模板解析执行需要模板表与转发表的支持,而这2个表中的数据在HotSpot虚拟机启动时就会初始化。这一篇首先介绍模板表。

在启动虚拟机阶段会调用init_globals()方法初始化全局模块,在这个方法中通过调用interpreter_init()方法初始化模板解释器,调用栈如下:


TemplateInterpreter::initialize() templateInterpreter.cpp
interpreter_init() interpreter.cpp
init_globals() init.cpp
Threads::create_vm() thread.cpp
JNI_CreateJavaVM() jni.cpp
InitializeJVM() java.c
JavaMain() java.c
start_thread() pthread_create.c

interpreter_init()方法主要是通过调用TemplateInterpreter::initialize()方法来完成逻辑,initialize()方法的实现如下:


源代码位置:/src/share/vm/interpreter/templateInterpreter.cpp

void TemplateInterpreter::initialize() {
if (_code != NULL)
return;

// 抽象解释器AbstractInterpreter的初始化,AbstractInterpreter是基于汇编模型的解释器的共同基类,
// 定义了解释器和解释器生成器的抽象接口
AbstractInterpreter::initialize();

// 模板表TemplateTable的初始化,模板表TemplateTable保存了各个字节码的模板
TemplateTable::initialize();

// generate interpreter
{
ResourceMark rm;
int code_size = InterpreterCodeSize;
// CodeCache的Stub队列StubQueue的初始化
_code = new StubQueue(new InterpreterCodeletInterface, code_size, NULL,"Interpreter");
// 实例化模板解释器生成器对象TemplateInterpreterGenerator
InterpreterGenerator g(_code);
}

// initialize dispatch table
_active_table = _normal_table;
}

模板解释器的初始化包括如下几个方面:

(1)抽象解释器AbstractInterpreter的初始化,AbstractInterpreter是基于汇编模型的解释器的共同基类,定义了解释器和解释器生成器的抽象接口。

(2)模板表TemplateTable的初始化,模板表TemplateTable保存了各个字节码的模板(目标代码生成函数和参数);

(3)CodeCache的Stub队列StubQueue的初始化;

(4)解释器生成器InterpreterGenerator的初始化。

在之前介绍过,在TemplateInterpreter::initialize() 中通过调用语句来间接调用generate_method_entry()和generate_normal_entry()创建方法执行的栈帧:


InterpreterGenerator g(_code);

不过在如上语句调用之前,首先需要调用TemplateInterpreter类中的initialize()方法初始化模板表,如下:


TemplateTable::initialize();

模板表TemplateTable保存了各个字节码的模板(目标代码生成函数和参数),initialize()方法的实现如下:

源代码位置:/src/share/vm/interpreter/templateInterpreter.cpp


void TemplateTable::initialize() {
if (_is_initialized) return;
_bs = Universe::heap()->barrier_set();
// For better readability
const char _ = ‘ ‘;
const int ____ = 0;
const int ubcp = 1 < const int disp = 1 < const int clvm = 1 < const int iswd = 1 < // interpr. templates
// Java spec bytecodes ubcp|disp|clvm|iswd in out generator argument
def(Bytecodes::_nop , ____|____|____|____, vtos, vtos, nop , _ );
def(Bytecodes::_aconst_null , ____|____|____|____, vtos, atos, aconst_null , _ );
def(Bytecodes::_iconst_m1 , ____|____|____|____, vtos, itos, iconst , -1 );
def(Bytecodes::_iconst_0 , ____|____|____|____, vtos, itos, iconst , 0 );
// ...
def(Bytecodes::_tableswitch , ubcp|disp|____|____, itos, vtos, tableswitch , _ );
def(Bytecodes::_lookupswitch , ubcp|disp|____|____, itos, itos, lookupswitch , _ );
def(Bytecodes::_ireturn , ____|disp|clvm|____, itos, itos, _return , itos );
def(Bytecodes::_lreturn , ____|disp|clvm|____, ltos, ltos, _return , ltos );
def(Bytecodes::_freturn , ____|disp|clvm|____, ftos, ftos, _return , ftos );
def(Bytecodes::_dreturn , ____|disp|clvm|____, dtos, dtos, _return , dtos );
def(Bytecodes::_areturn , ____|disp|clvm|____, atos, atos, _return , atos );
def(Bytecodes::_return , ____|disp|clvm|____, vtos, vtos, _return , vtos );
def(Bytecodes::_getstatic , ubcp|____|clvm|____, vtos, vtos, getstatic , f1_byte );
def(Bytecodes::_putstatic , ubcp|____|clvm|____, vtos, vtos, putstatic , f2_byte );
def(Bytecodes::_getfield , ubcp|____|clvm|____, vtos, vtos, getfield , f1_byte );
def(Bytecodes::_putfield , ubcp|____|clvm|____, vtos, vtos, putfield , f2_byte );
def(Bytecodes::_invokevirtual , ubcp|disp|clvm|____, vtos, vtos, invokevirtual , f2_byte );
def(Bytecodes::_invokespecial , ubcp|disp|clvm|____, vtos, vtos, invokespecial , f1_byte );
def(Bytecodes::_invokestatic , ubcp|disp|clvm|____, vtos, vtos, invokestatic , f1_byte );
def(Bytecodes::_invokeinterface , ubcp|disp|clvm|____, vtos, vtos, invokeinterface , f1_byte );
def(Bytecodes::_invokedynamic , ubcp|disp|clvm|____, vtos, vtos, invokedynamic , f1_byte );
def(Bytecodes::_new , ubcp|____|clvm|____, vtos, atos, _new , _ );
def(Bytecodes::_newarray , ubcp|____|clvm|____, itos, atos, newarray , _ );
def(Bytecodes::_anewarray , ubcp|____|clvm|____, itos, atos, anewarray , _ );
def(Bytecodes::_arraylength , ____|____|____|____, atos, itos, arraylength , _ );
def(Bytecodes::_athrow , ____|disp|____|____, atos, vtos, athrow , _ );
def(Bytecodes::_checkcast , ubcp|____|clvm|____, atos, atos, checkcast , _ );
def(Bytecodes::_instanceof , ubcp|____|clvm|____, atos, itos, instanceof , _ );
def(Bytecodes::_monitorenter , ____|disp|clvm|____, atos, vtos, monitorenter , _ );
def(Bytecodes::_monitorexit , ____|____|clvm|____, atos, vtos, monitorexit , _ );
def(Bytecodes::_wide , ubcp|disp|____|____, vtos, vtos, wide , _ );
def(Bytecodes::_multianewarray , ubcp|____|clvm|____, vtos, atos, multianewarray , _ );
def(Bytecodes::_ifnull , ubcp|____|clvm|____, atos, vtos, if_nullcmp , equal );
def(Bytecodes::_ifnonnull , ubcp|____|clvm|____, atos, vtos, if_nullcmp , not_equal );
def(Bytecodes::_goto_w , ubcp|____|clvm|____, vtos, vtos, goto_w , _ );
def(Bytecodes::_jsr_w , ubcp|____|____|____, vtos, vtos, jsr_w , _ );
// wide Java spec bytecodes
def(Bytecodes::_iload , ubcp|____|____|iswd, vtos, itos, wide_iload , _ );
def(Bytecodes::_lload , ubcp|____|____|iswd, vtos, ltos, wide_lload , _ );
// ...
// JVM bytecodes
def(Bytecodes::_fast_agetfield , ubcp|____|____|____, atos, atos, fast_accessfield , atos );
def(Bytecodes::_fast_bgetfield , ubcp|____|____|____, atos, itos, fast_accessfield , itos );
def(Bytecodes::_fast_cgetfield , ubcp|____|____|____, atos, itos, fast_accessfield , itos );
def(Bytecodes::_fast_dgetfield , ubcp|____|____|____, atos, dtos, fast_accessfield , dtos );
def(Bytecodes::_fast_fgetfield , ubcp|____|____|____, atos, ftos, fast_accessfield , ftos );
def(Bytecodes::_fast_igetfield , ubcp|____|____|____, atos, itos, fast_accessfield , itos );
def(Bytecodes::_fast_lgetfield , ubcp|____|____|____, atos, ltos, fast_accessfield , ltos );
def(Bytecodes::_fast_sgetfield , ubcp|____|____|____, atos, itos, fast_accessfield , itos );
def(Bytecodes::_fast_aputfield , ubcp|____|____|____, atos, vtos, fast_storefield , atos );
def(Bytecodes::_fast_bputfield , ubcp|____|____|____, itos, vtos, fast_storefield , itos );
def(Bytecodes::_fast_cputfield , ubcp|____|____|____, itos, vtos, fast_storefield , itos );
def(Bytecodes::_fast_dputfield , ubcp|____|____|____, dtos, vtos, fast_storefield , dtos );
def(Bytecodes::_fast_fputfield , ubcp|____|____|____, ftos, vtos, fast_storefield , ftos );
def(Bytecodes::_fast_iputfield , ubcp|____|____|____, itos, vtos, fast_storefield , itos );
def(Bytecodes::_fast_lputfield , ubcp|____|____|____, ltos, vtos, fast_storefield , ltos );
def(Bytecodes::_fast_sputfield , ubcp|____|____|____, itos, vtos, fast_storefield , itos );
def(Bytecodes::_fast_aload_0 , ____|____|____|____, vtos, atos, aload , 0 );
def(Bytecodes::_fast_iaccess_0 , ubcp|____|____|____, vtos, itos, fast_xaccess , itos );
def(Bytecodes::_fast_aaccess_0 , ubcp|____|____|____, vtos, atos, fast_xaccess , atos );
def(Bytecodes::_fast_faccess_0 , ubcp|____|____|____, vtos, ftos, fast_xaccess , ftos );
def(Bytecodes::_fast_iload , ubcp|____|____|____, vtos, itos, fast_iload , _ );
def(Bytecodes::_fast_iload2 , ubcp|____|____|____, vtos, itos, fast_iload2 , _ );
def(Bytecodes::_fast_icaload , ubcp|____|____|____, vtos, itos, fast_icaload , _ );
def(Bytecodes::_fast_invokevfinal , ubcp|disp|clvm|____, vtos, vtos, fast_invokevfinal , f2_byte );
def(Bytecodes::_fast_linearswitch , ubcp|disp|____|____, itos, vtos, fast_linearswitch , _ );
def(Bytecodes::_fast_binaryswitch , ubcp|disp|____|____, itos, vtos, fast_binaryswitch , _ );
def(Bytecodes::_fast_aldc , ubcp|____|clvm|____, vtos, atos, fast_aldc , false );
def(Bytecodes::_fast_aldc_w , ubcp|____|clvm|____, vtos, atos, fast_aldc , true );
def(Bytecodes::_return_register_finalizer , ____|disp|clvm|____, vtos, vtos, _return , vtos );
def(Bytecodes::_invokehandle , ubcp|disp|clvm|____, vtos, vtos, invokehandle , f1_byte );
def(Bytecodes::_shouldnotreachhere , ____|____|____|____, vtos, vtos, shouldnotreachhere , _ );
// platform specific bytecodes
pd_initialize();
_is_initialized = true;
}

TemplateTable的初始化调用def()将所有字节码的目标代码生成函数和参数保存在_template_table或_template_table_wide(wide指令)模板数组中。除了虚拟机规范本身定义的字节码指令外,HotSpot虚拟机也定义了一些字节码指令,这些指令为了辅助虚拟机进行更好、理简单的功能实现,例如Bytecodes::_return_register_finalizer等在之前已经介绍过,可以更好的实现finalizer类型对象的注册功能。

对于调用def()函数时传递的一些参数在后面会解释。def()函数有2个,接收的参数不同,实现如下:


void TemplateTable::def(
Bytecodes::Code code, // 字节码指令
int flags, // 标志位
TosState in, // 模板执行前TosState
TosState out, // 模板执行后TosState
void (*gen)(), // 模板生成器,是模板的核心组件
char filler
) {
assert(filler == ‘ ‘, "just checkin‘");
def(code, flags, in, out, (Template::generator)gen, 0); // 调用下面的def()函数
}
void TemplateTable::def(
Bytecodes::Code code, // 字节码指令
int flags, // 标志位
TosState in, // 模板执行前TosState
TosState out, // 模板执行后TosState
void (*gen)(int arg), // 模板生成器,是模板的核心组件
int arg
) {
// should factor out these constants
const int ubcp = 1 < const int disp = 1 < const int clvm = 1 < const int iswd = 1 < // determine which table to use
bool is_wide = (flags & iswd) != 0;
// make sure that wide instructions have a vtos entry point
// (since they are executed extremely rarely, it doesn‘t pay out to have an
// extra set of 5 dispatch tables for the wide instructions - for simplicity
// they all go with one table)
assert(in == vtos || !is_wide, "wide instructions have vtos entry point only");
Template* t = is_wide ? template_for_wide(code) : template_for(code);
// setup entry
t->initialize(flags, in, out, gen, arg); // 调用模板表t的initialize()方法初始化模板表
assert(t->bytecode() == code, "just checkin‘");
}

模板表由模板表数组与一组生成器组成:

(1)模板表数组有_template_table与_template_table_wild,数组的下标为bytecode,值为Template,按照字节码指令的操作码递增顺序排列。

(2)一组生成器,所有与bytecode配套的生成器,在初始化模板表时作为gen参数传给相应的Template。

Template类的定义如下:


源代码位置:hotspot/src/share/vm/interpreter/templateTable.hpp
// A Template describes the properties of a code template for a given bytecode
// and provides a generator to generate the code template.
class Template VALUE_OBJ_CLASS_SPEC {
private:
enum Flags {
// 字节码指令指的是该字节码的操作数是否存在于字节码里面
uses_bcp_bit, // set if template needs the bcp pointing to bytecode
does_dispatch_bit,// set if template dispatches on its own
calls_vm_bit, // set if template calls the vm
wide_bit // set if template belongs to a wide instruction
};
typedef void (*generator)(int arg);
int _flags; // describes interpreter template properties (bcp unknown)
TosState _tos_in; // tos cache state before template execution
TosState _tos_out; // tos cache state after template execution
generator _gen; // template code generator
int _arg; // argument for template code generator
...
// Templates
static Template* template_for(Bytecodes::Code code) {
Bytecodes::check(code);
return &_template_table[code];
}
static Template* template_for_wide(Bytecodes::Code code) {
Bytecodes::wide_check(code);
return &_template_table_wide[code];
}
};

调用的template_for()与template_for_wild()方法从_template_table或_template_for_wild数组中取值。这2个变量定义在TemplateTable类中,如下:


static Template _template_table [Bytecodes::number_of_codes];
static Template _template_table_wide[Bytecodes::number_of_codes];

继续看TemplateTable::def(0函数的各个参数,解释如下:

(1)_flags:是一个标志,低四位分别表示:



  • uses_bcp_bit,标志需要使用字节码指针(byte code pointer,数值为字节码基址+字节码偏移量)

  • does_dispatch_bit,标志是否在模板范围内进行转发,如跳转类指令会设置该位

  • calls_vm_bit,标志是否需要调用JVM函数

  • wide_bit,标志是否是wide指令(使用附加字节扩展全局变量索引)

(2)_tos_in:表示模板执行前的TosState(操作数栈栈顶元素的数据类型,TopOfStack,用来检查模板所声明的输出输入类型是否和该函数一致,以确保栈顶元素被正确使用)

(3)_tos_out:表示模板执行后的TosState 

(4)_gen:表示模板生成器(函数指针)

(5)_arg:表示模板生成器参数

再来看一下TemplateTable::initialize()方法中对def()函数的调用,以_iinc(将局部变量增加1)为例,调用如下:


def(
Bytecodes::_iinc, // 字节码指令
ubcp|____|clvm|____, // 标志
vtos, // 模板执行前的TosState
vtos, // 模板执行后的TosState
iinc , // 模板生成器,是一个iinc()函数的指针
_ // 不需要模板生成器参数
); 

设置标志位uses_bcp_bit和calls_vm_bit,表示iinc指令的生成器需要使用bcp指针函数at_bcp(),且需要调用JVM函数,下面给出了生成器的定义:


源代码位置:/hotspot/src/cpu/x86/vm/templateTable_x86_64.cpp
void TemplateTable::iinc() {
transition(vtos, vtos);
__ load_signed_byte(rdx, at_bcp(2)); // get constant
locals_index(rbx);
__ addl(iaddress(rbx), rdx);
}

iinc指令的格式如下:


iinc
index
const

操作码iinc占用一个字节,而index与const分别占用一个字节。使用at_bcp()函数获取iinc指令的操作数,2表示偏移2字节,所以会将const取出来存储到rdx中。调用locals_index()函数取出index,locals_index()就是JVM函数。最终生成的汇编如下:


// %r13存储的是指向字节码的指针,偏移2字节后取出const存储到%edx
0x00007fffe101a210: movsbl 0x2(%r13),%edx
// 取出index存储到%ebx
0x00007fffe101a215: movzbl 0x1(%r13),%ebx
0x00007fffe101a21a: neg %rbx
// %r14指向本地变量表的首地址,将%edx加到%r14+%rbx*8指向的内存所存储的值上
// 之所以要对%rbx执行neg进行符号反转,是因为在Linux内核的操作系统上,栈是向低地址方向生长的
0x00007fffe101a21d: add %edx,(%r14,%rbx,8)

不过这里并不会调用iinc()函数生成对应的汇编代码,只是将传递给def()函数的各种信息保存到Template对象中,在TemplateTable::def()方法中,通过template_for()或template_for_wild()方法获取到数组中对应的Template对象后,就会调用Template::initialize()方法,实现如下:


void Template::initialize(int flags, TosState tos_in, TosState tos_out, generator gen, int arg) {
_flags = flags;
_tos_in = tos_in;
_tos_out = tos_out;
_gen = gen;
_arg = arg;
}

可以看到,只是将信息保存到对应的Template对象中,这样就可以根据字节码索引从数组中获取对应的Template对象,进而获取相关信息。下一篇我们将会看到对这些信息的使用。  

相关文章的链接如下:

1、在Ubuntu 16.04上编译OpenJDK8的源代码 

2、调试HotSpot源代码

3、HotSpot项目结构 

4、HotSpot的启动过程 

5、HotSpot二分模型(1)

6、HotSpot的类模型(2)  

7、HotSpot的类模型(3) 

8、HotSpot的类模型(4)

9、HotSpot的对象模型(5)  

10、HotSpot的对象模型(6) 

11、操作句柄Handle(7)

12、句柄Handle的释放(8)

13、类加载器 

14、类的双亲委派机制 

15、核心类的预装载

16、Java主类的装载  

17、触发类的装载  

18、类文件介绍 

19、文件流 

20、解析Class文件 

21、常量池解析(1) 

22、常量池解析(2)

23、字段解析(1)

24、字段解析之伪共享(2) 

25、字段解析(3)  

26、字段解析之OopMapBlock(4)

27、方法解析之Method与ConstMethod介绍  

28、方法解析

29、klassVtable与klassItable类的介绍  

30、计算vtable的大小 

31、计算itable的大小 

32、解析Class文件之创建InstanceKlass对象 

33、字段解析之字段注入 

34、类的连接  

35、类的连接之验证 

36、类的连接之重写(1) 

37、类的连接之重写(2)

38、方法的连接  

39、初始化vtable 

40、初始化itable  

41、类的初始化 

42、对象的创建  

43、Java引用类型 

44、Java引用类型之软引用(1)

45、Java引用类型之软引用(2)

46、Java引用类型之弱引用与幻像引用  

47、Java引用类型之最终引用

48、HotSpot的垃圾回收算法  

49、HotSpot的垃圾回收器   

50、CallStub栈帧 

51、entry point栈帧  

52、generate_fixed_frame()方法生成Java方法栈帧 

53、dispatch_next()方法的实现  

54、虚拟机执行模式 

作者持续维护的个人博客  classloading.com

关注公众号,有HotSpot源码剖析系列文章!

技术分享图片   

  

 


推荐阅读
  • HDU 2372 El Dorado(DP)的最长上升子序列长度求解方法
    本文介绍了解决HDU 2372 El Dorado问题的一种动态规划方法,通过循环k的方式求解最长上升子序列的长度。具体实现过程包括初始化dp数组、读取数列、计算最长上升子序列长度等步骤。 ... [详细]
  • 本文讨论了如何优化解决hdu 1003 java题目的动态规划方法,通过分析加法规则和最大和的性质,提出了一种优化的思路。具体方法是,当从1加到n为负时,即sum(1,n)sum(n,s),可以继续加法计算。同时,还考虑了两种特殊情况:都是负数的情况和有0的情况。最后,通过使用Scanner类来获取输入数据。 ... [详细]
  • 本文介绍了OC学习笔记中的@property和@synthesize,包括属性的定义和合成的使用方法。通过示例代码详细讲解了@property和@synthesize的作用和用法。 ... [详细]
  • 动态规划算法的基本步骤及最长递增子序列问题详解
    本文详细介绍了动态规划算法的基本步骤,包括划分阶段、选择状态、决策和状态转移方程,并以最长递增子序列问题为例进行了详细解析。动态规划算法的有效性依赖于问题本身所具有的最优子结构性质和子问题重叠性质。通过将子问题的解保存在一个表中,在以后尽可能多地利用这些子问题的解,从而提高算法的效率。 ... [详细]
  • 本文介绍了使用Java实现大数乘法的分治算法,包括输入数据的处理、普通大数乘法的结果和Karatsuba大数乘法的结果。通过改变long类型可以适应不同范围的大数乘法计算。 ... [详细]
  • 本文介绍了九度OnlineJudge中的1002题目“Grading”的解决方法。该题目要求设计一个公平的评分过程,将每个考题分配给3个独立的专家,如果他们的评分不一致,则需要请一位裁判做出最终决定。文章详细描述了评分规则,并给出了解决该问题的程序。 ... [详细]
  • 本文主要解析了Open judge C16H问题中涉及到的Magical Balls的快速幂和逆元算法,并给出了问题的解析和解决方法。详细介绍了问题的背景和规则,并给出了相应的算法解析和实现步骤。通过本文的解析,读者可以更好地理解和解决Open judge C16H问题中的Magical Balls部分。 ... [详细]
  • 本文介绍了P1651题目的描述和要求,以及计算能搭建的塔的最大高度的方法。通过动态规划和状压技术,将问题转化为求解差值的问题,并定义了相应的状态。最终得出了计算最大高度的解法。 ... [详细]
  • 1,关于死锁的理解死锁,我们可以简单的理解为是两个线程同时使用同一资源,两个线程又得不到相应的资源而造成永无相互等待的情况。 2,模拟死锁背景介绍:我们创建一个朋友 ... [详细]
  • 《数据结构》学习笔记3——串匹配算法性能评估
    本文主要讨论串匹配算法的性能评估,包括模式匹配、字符种类数量、算法复杂度等内容。通过借助C++中的头文件和库,可以实现对串的匹配操作。其中蛮力算法的复杂度为O(m*n),通过随机取出长度为m的子串作为模式P,在文本T中进行匹配,统计平均复杂度。对于成功和失败的匹配分别进行测试,分析其平均复杂度。详情请参考相关学习资源。 ... [详细]
  • 本文介绍了在Ubuntu下制作deb安装包及离线安装包的方法,通过备份/var/cache/apt/archives文件夹中的安装包,并建立包列表及依赖信息文件,添加本地源,更新源列表,可以在没有网络的情况下更新系统。同时提供了命令示例和资源下载链接。 ... [详细]
  • 代理模式的详细介绍及应用场景
    代理模式是一种在软件开发中常用的设计模式,通过在客户端和目标对象之间增加一层中间层,让代理对象代替目标对象进行访问,从而简化系统的复杂性。代理模式可以根据不同的使用目的分为远程代理、虚拟代理、Copy-on-Write代理、保护代理、防火墙代理、智能引用代理和Cache代理等几种。本文将详细介绍代理模式的原理和应用场景。 ... [详细]
  • DSP中cmd文件的命令文件组成及其作用
    本文介绍了DSP中cmd文件的命令文件的组成和作用,包括链接器配置文件的存放链接器配置信息、命令文件的组成、MEMORY和SECTIONS两个伪指令的使用、CMD分配ROM和RAM空间的目的以及MEMORY指定芯片的ROM和RAM大小和划分区间的方法。同时强调了根据不同芯片进行修改的必要性,以适应不同芯片的存储用户程序的需求。 ... [详细]
  • linux进阶50——无锁CAS
    1.概念比较并交换(compareandswap,CAS),是原⼦操作的⼀种,可⽤于在多线程编程中实现不被打断的数据交换操作࿰ ... [详细]
  • 第七课主要内容:多进程多线程FIFO,LIFO,优先队列线程局部变量进程与线程的选择线程池异步IO概念及twisted案例股票数据抓取 ... [详细]
author-avatar
用户hxjr5k4y3f
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有