热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

P1651塔(动态规划)的最大高度计算方法

本文介绍了P1651题目的描述和要求,以及计算能搭建的塔的最大高度的方法。通过动态规划和状压技术,将问题转化为求解差值的问题,并定义了相应的状态。最终得出了计算最大高度的解法。

题目描述

小明很喜欢摆积木,现在他正在玩的积木是由N个木块组成的,他想用这些木块搭出两座高度相同的塔,一座塔的高度是搭建它的所有木块的高度和,并且一座塔至少要用一个木块。每个木块只能用一次,也可以不用。目前已知每块木块的高度,小明想知道在最终两个塔的高度相同的情况下,他所能搭的塔的最大高度是多少,你能帮助他吗?

输入输出格式

输入格式:

第一行为一个整数N,表示木块个数。

第二行是N个整数,表示N块木块的高度。

【数据规模】

对于100%的数据,N≤50,每块木块的高度h满足1≤h≤500000,所有木块的高度总和≤500000。

输出格式:

仅一个整数,表示能搭建的塔的最大高度,若不能搭建两座相同高度的塔,则输出“-1”。

输入输出样例

输入样例#1:

3
2 3 5

输出样例#1:

5

Solution

这道题想了我好一会啊,一直往状压方面凑...不过一开始忽略了一个条件,所有的木块都要放完.
状态需要联系到差值,这类要求相等的题目似乎都可以和差值联系上.
定义状态:
\[f[i][j]\]
1) i代表当前到了第 i 个木块,然后 j 代表此时较小值与较大值的差值.
2) f[i][j] 保存的是当前较小值的值.

状态转移
1) 一个基本的方向:我们让当前的较小值取更大,更接近较大值.
2) 当前这个木块有两个走向:
给较小值:
此时我们由前一个状态走过来话,他们的差值会变得更小.
同时这个较小值也会变大.
此时我们的状态转移即为:
\[f[i][j]=max(f[i-1][j],f[i-1][j+c[i]]+c[i]);\]
给较大值
此时同理上方,但是我们需要比较当前这个 j 和 c[i] 的大小.
因为我们 f 数组记录的是较小值.所以不可能之前的差值为负数.
此时状态转移为:
1.c[i] 大于 j
\[f[i][j]=max(f[i][j],f[i-1][c[i]-j]+c[i]-j);\]
2. j 小于 c[i]
\[f[i][j]=max(f[i][j],f[i-1][j-c[i]]);\]

于是我们转移便已完成.
不过这道题目还有一个坑点,就是极小值必须赋成很小.
否则会 WA 的很惨.

代码

#include
using namespace std;
const int inf=19260817;
const int maxn=51;
int f[maxn][maxn*10000],sum;
int n,c[maxn*2],ans=-1;
int main()
{ios::sync_with_stdio(false);cin>>n;for(int i&#61;1;i<&#61;n;i&#43;&#43;)cin>>c[i],c[i&#43;n]&#61;c[i],sum&#43;&#61;c[i];for(int i&#61;1;i<&#61;n;i&#43;&#43;)for(int j&#61;0;j<&#61;sum;j&#43;&#43;)f[i][j]&#61;-inf;f[1][0]&#61;0,f[1][c[1]]&#61;0;for(int i&#61;2;i<&#61;n;i&#43;&#43;)for(int j&#61;0;j<&#61;sum;j&#43;&#43;){f[i][j]&#61;f[i-1][j];f[i][j]&#61;max(f[i][j],f[i-1][j&#43;c[i]]&#43;c[i]);if(j}

转载于:https://www.cnblogs.com/Kv-Stalin/p/9183325.html


推荐阅读
  • 本文主要解析了Open judge C16H问题中涉及到的Magical Balls的快速幂和逆元算法,并给出了问题的解析和解决方法。详细介绍了问题的背景和规则,并给出了相应的算法解析和实现步骤。通过本文的解析,读者可以更好地理解和解决Open judge C16H问题中的Magical Balls部分。 ... [详细]
  • HDU 2372 El Dorado(DP)的最长上升子序列长度求解方法
    本文介绍了解决HDU 2372 El Dorado问题的一种动态规划方法,通过循环k的方式求解最长上升子序列的长度。具体实现过程包括初始化dp数组、读取数列、计算最长上升子序列长度等步骤。 ... [详细]
  • 本文为Codeforces 1294A题目的解析,主要讨论了Collecting Coins整除+不整除问题。文章详细介绍了题目的背景和要求,并给出了解题思路和代码实现。同时提供了在线测评地址和相关参考链接。 ... [详细]
  • 本文介绍了九度OnlineJudge中的1002题目“Grading”的解决方法。该题目要求设计一个公平的评分过程,将每个考题分配给3个独立的专家,如果他们的评分不一致,则需要请一位裁判做出最终决定。文章详细描述了评分规则,并给出了解决该问题的程序。 ... [详细]
  • 本文介绍了C++中省略号类型和参数个数不确定函数参数的使用方法,并提供了一个范例。通过宏定义的方式,可以方便地处理不定参数的情况。文章中给出了具体的代码实现,并对代码进行了解释和说明。这对于需要处理不定参数的情况的程序员来说,是一个很有用的参考资料。 ... [详细]
  • 本文讨论了使用差分约束系统求解House Man跳跃问题的思路与方法。给定一组不同高度,要求从最低点跳跃到最高点,每次跳跃的距离不超过D,并且不能改变给定的顺序。通过建立差分约束系统,将问题转化为图的建立和查询距离的问题。文章详细介绍了建立约束条件的方法,并使用SPFA算法判环并输出结果。同时还讨论了建边方向和跳跃顺序的关系。 ... [详细]
  • 本文介绍了UVALive6575题目Odd and Even Zeroes的解法,使用了数位dp和找规律的方法。阶乘的定义和性质被介绍,并给出了一些例子。其中,部分阶乘的尾零个数为奇数,部分为偶数。 ... [详细]
  • Linux环境变量函数getenv、putenv、setenv和unsetenv详解
    本文详细解释了Linux中的环境变量函数getenv、putenv、setenv和unsetenv的用法和功能。通过使用这些函数,可以获取、设置和删除环境变量的值。同时给出了相应的函数原型、参数说明和返回值。通过示例代码演示了如何使用getenv函数获取环境变量的值,并打印出来。 ... [详细]
  • [大整数乘法] java代码实现
    本文介绍了使用java代码实现大整数乘法的过程,同时也涉及到大整数加法和大整数减法的计算方法。通过分治算法来提高计算效率,并对算法的时间复杂度进行了研究。详细代码实现请参考文章链接。 ... [详细]
  • 本文介绍了一个题目的解法,通过二分答案来解决问题,但困难在于如何进行检查。文章提供了一种逃逸方式,通过移动最慢的宿管来锁门时跑到更居中的位置,从而使所有合格的寝室都居中。文章还提到可以分开判断两边的情况,并使用前缀和的方式来求出在任意时刻能够到达宿管即将锁门的寝室的人数。最后,文章提到可以改成O(n)的直接枚举来解决问题。 ... [详细]
  • 3.223.28周学习总结中的贪心作业收获及困惑
    本文是对3.223.28周学习总结中的贪心作业进行总结,作者在解题过程中参考了他人的代码,但前提是要先理解题目并有解题思路。作者分享了自己在贪心作业中的收获,同时提到了一道让他困惑的题目,即input details部分引发的疑惑。 ... [详细]
  • 预备知识可参考我整理的博客Windows编程之线程:https:www.cnblogs.comZhuSenlinp16662075.htmlWindows编程之线程同步:https ... [详细]
  • android listview OnItemClickListener失效原因
    最近在做listview时发现OnItemClickListener失效的问题,经过查找发现是因为button的原因。不仅listitem中存在button会影响OnItemClickListener事件的失效,还会导致单击后listview每个item的背景改变,使得item中的所有有关焦点的事件都失效。本文给出了一个范例来说明这种情况,并提供了解决方法。 ... [详细]
  • 本文介绍了指针的概念以及在函数调用时使用指针作为参数的情况。指针存放的是变量的地址,通过指针可以修改指针所指的变量的值。然而,如果想要修改指针的指向,就需要使用指针的引用。文章还通过一个简单的示例代码解释了指针的引用的使用方法,并思考了在修改指针的指向后,取指针的输出结果。 ... [详细]
  • 开发笔记:实验7的文件读写操作
    本文介绍了使用C++的ofstream和ifstream类进行文件读写操作的方法,包括创建文件、写入文件和读取文件的过程。同时还介绍了如何判断文件是否成功打开和关闭文件的方法。通过本文的学习,读者可以了解如何在C++中进行文件读写操作。 ... [详细]
author-avatar
一个怪瓜的自白
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有