热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

解决pythonmatplotlib画水平直线的问题

本文介绍了在使用python的matplotlib库画水平直线时可能遇到的问题,并提供了解决方法。通过导入numpy和matplotlib.pyplot模块,设置绘图对象的宽度和高度,以及使用plot函数绘制水平直线,可以解决该问题。

想要的图像如下:

 

 

一开始是这样画的:


import numpy as np #使用import导入模块numpy,并简写成np
import matplotlib.pyplot as plt #使用import导入模块matplotlib.pyplot,并简写成plt
plt.figure(figsize=(8,4)) #设置绘图对象的宽度和高度t = np.arange(0,1.1,0.1)
theta = 30+15*(t**2)
theta_v = 30*t
theta_accel = 30 plt.plot(t,theta,label="$theta$",color="red",linewidth=2)
plt.plot(t,theta_v,label="$thetaV$",color="green",linewidth=2)
#plt.plot(t,theta_accel,label="$thetaAccel$",color="blue",linewidth=2)t = np.arange(1,3.1,0.1)
theta = 45+30*(t-1)
theta_v = 30
theta_accel = 0 plt.plot(t,theta,label="$theta$",color="red",linewidth=2)
#plt.plot(t,theta_v,label="$thetaV$",color="green",linewidth=2)
#plt.plot(t,theta_accel,label="$thetaAccel$",color="blue",linewidth=2)t = np.arange(3,4.1,0.1)
theta = 120-15*((4-t)**2)
theta_v = 30*(4-t)
theta_accel = -30 plt.plot(t,theta,label="$theta$",color="red",linewidth=2)
plt.plot(t,theta_v,label="$thetaV$",color="green",linewidth=2)
#plt.plot(t,theta_accel,label="$thetaAccel$",color="blue")plt.ylim(-40,200) #使用plt.ylim设置y坐标轴范围
plt.xlim(-1,5)
plt.xlabel("Time(s)") #用plt.xlabel设置x坐标轴名称
plt.legend(loc='upper left') #设置图例位置
plt.grid(True)
plt.show()

  


#plt.plot(t,theta_accel,label="$thetaAccel$",color="blue",linewidth=2)

可以发现当theta_accel为常数时 plot失效,无法画出图像。
因为theta_accel = -30 不含变量t,改为:

theta_accel = -30 +t*0

 则函数能够画出想要画的图像。

 

修改完,代码如下:


"""niku 习题5.5"""
import numpy as np #使用import导入模块numpy,并简写成np
import matplotlib.pyplot as plt #使用import导入模块matplotlib.pyplot,并简写成plt
plt.figure(figsize=(8,4)) #设置绘图对象的宽度和高度t = np.arange(0,1.1,0.1)
theta = 30+15*(t**2)
theta_v = 30*t
theta_accel = 30+t*0 plt.plot(t,theta,label="$theta$",color="red",linewidth=2)
plt.plot(t,theta_v,label="$thetaV$",color="green",linewidth=2)
plt.plot(t,theta_accel,label="$thetaAccel$",color="b")t = np.arange(1,3.1,0.1)
theta = 45+30*(t-1)
theta_v = 30+t*0
theta_accel = 0 +t*0 plt.plot(t,theta,label="$theta$",color="red",linewidth=2)
plt.plot(t,theta_v,label="$thetaV$",color="green",linewidth=2)
plt.plot(t,theta_accel,label="$thetaAccel$",color="b",linewidth=2)t = np.arange(3,4.1,0.1)
theta = 120-15*((4-t)**2)
theta_v = 30*(4-t)
theta_accel = -30 +t*0 plt.plot(t,theta,label="$theta$",color="red",linewidth=2)
plt.plot(t,theta_v,label="$thetaV$",color="green",linewidth=2)
plt.plot(t,theta_accel,label="$thetaAccel$",color="b")plt.ylim(-40,125) #使用plt.ylim设置y坐标轴范围
plt.xlim(-1,5)
plt.xlabel("Time(s)") #用plt.xlabel设置x坐标轴名称
'''设置图例位置'''
#plt.legend(loc='upper right') #设置图例位置
plt.grid(True)
plt.show()

  生成图像如下:

成功!!!


推荐阅读
  • 本文介绍了利用ARMA模型对平稳非白噪声序列进行建模的步骤及代码实现。首先对观察值序列进行样本自相关系数和样本偏自相关系数的计算,然后根据这些系数的性质选择适当的ARMA模型进行拟合,并估计模型中的位置参数。接着进行模型的有效性检验,如果不通过则重新选择模型再拟合,如果通过则进行模型优化。最后利用拟合模型预测序列的未来走势。文章还介绍了绘制时序图、平稳性检验、白噪声检验、确定ARMA阶数和预测未来走势的代码实现。 ... [详细]
  • 不同优化算法的比较分析及实验验证
    本文介绍了神经网络优化中常用的优化方法,包括学习率调整和梯度估计修正,并通过实验验证了不同优化算法的效果。实验结果表明,Adam算法在综合考虑学习率调整和梯度估计修正方面表现较好。该研究对于优化神经网络的训练过程具有指导意义。 ... [详细]
  • YOLOv7基于自己的数据集从零构建模型完整训练、推理计算超详细教程
    本文介绍了关于人工智能、神经网络和深度学习的知识点,并提供了YOLOv7基于自己的数据集从零构建模型完整训练、推理计算的详细教程。文章还提到了郑州最低生活保障的话题。对于从事目标检测任务的人来说,YOLO是一个熟悉的模型。文章还提到了yolov4和yolov6的相关内容,以及选择模型的优化思路。 ... [详细]
  • 展开全部下面的代码是创建一个立方体Thisexamplescreatesanddisplaysasimplebox.#Thefirstlineloadstheinit_disp ... [详细]
  • Python瓦片图下载、合并、绘图、标记的代码示例
    本文提供了Python瓦片图下载、合并、绘图、标记的代码示例,包括下载代码、多线程下载、图像处理等功能。通过参考geoserver,使用PIL、cv2、numpy、gdal、osr等库实现了瓦片图的下载、合并、绘图和标记功能。代码示例详细介绍了各个功能的实现方法,供读者参考使用。 ... [详细]
  • 本文介绍了机器学习手册中关于日期和时区操作的重要性以及其在实际应用中的作用。文章以一个故事为背景,描述了学童们面对老先生的教导时的反应,以及上官如在这个过程中的表现。同时,文章也提到了顾慎为对上官如的恨意以及他们之间的矛盾源于早年的结局。最后,文章强调了日期和时区操作在机器学习中的重要性,并指出了其在实际应用中的作用和意义。 ... [详细]
  • web.py开发web 第八章 Formalchemy 服务端验证方法
    本文介绍了在web.py开发中使用Formalchemy进行服务端表单数据验证的方法。以User表单为例,详细说明了对各字段的验证要求,包括必填、长度限制、唯一性等。同时介绍了如何自定义验证方法来实现验证唯一性和两个密码是否相等的功能。该文提供了相关代码示例。 ... [详细]
  • 基于dlib的人脸68特征点提取(眨眼张嘴检测)python版本
    文章目录引言开发环境和库流程设计张嘴和闭眼的检测引言(1)利用Dlib官方训练好的模型“shape_predictor_68_face_landmarks.dat”进行68个点标定 ... [详细]
  • EzPP 0.2发布,新增YAML布局渲染功能
    EzPP发布了0.2.1版本,新增了YAML布局渲染功能,可以将YAML文件渲染为图片,并且可以复用YAML作为模版,通过传递不同参数生成不同的图片。这个功能可以用于绘制Logo、封面或其他图片,让用户不需要安装或卸载Photoshop。文章还提供了一个入门例子,介绍了使用ezpp的基本渲染方法,以及如何使用canvas、text类元素、自定义字体等。 ... [详细]
  • 十大经典排序算法动图演示+Python实现
    本文介绍了十大经典排序算法的原理、演示和Python实现。排序算法分为内部排序和外部排序,常见的内部排序算法有插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。文章还解释了时间复杂度和稳定性的概念,并提供了相关的名词解释。 ... [详细]
  • Python使用Pillow包生成验证码图片的方法
    本文介绍了使用Python中的Pillow包生成验证码图片的方法。通过随机生成数字和符号,并添加干扰象素,生成一幅验证码图片。需要配置好Python环境,并安装Pillow库。代码实现包括导入Pillow包和随机模块,定义随机生成字母、数字和字体颜色的函数。 ... [详细]
  • 也就是|小窗_卷积的特征提取与参数计算
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了卷积的特征提取与参数计算相关的知识,希望对你有一定的参考价值。Dense和Conv2D根本区别在于,Den ... [详细]
  • 这是一个愚蠢的问题,但我只是对此感到好奇.假设我在Pythonshell,我有一些我查询的数据库对象.我做:db.query(的queryString)该查询在0xffdf842c ... [详细]
  • 本文介绍了使用Spark实现低配版高斯朴素贝叶斯模型的原因和原理。随着数据量的增大,单机上运行高斯朴素贝叶斯模型会变得很慢,因此考虑使用Spark来加速运行。然而,Spark的MLlib并没有实现高斯朴素贝叶斯模型,因此需要自己动手实现。文章还介绍了朴素贝叶斯的原理和公式,并对具有多个特征和类别的模型进行了讨论。最后,作者总结了实现低配版高斯朴素贝叶斯模型的步骤。 ... [详细]
  • 本文介绍了Python字典视图对象的示例和用法。通过对示例代码的解释,展示了字典视图对象的基本操作和特点。字典视图对象可以通过迭代或转换为列表来获取字典的键或值。同时,字典视图对象也是动态的,可以反映字典的变化。通过学习字典视图对象的用法,可以更好地理解和处理字典数据。 ... [详细]
author-avatar
hro5028136
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有