热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

它处资料:多柱汉诺塔最优算法设计探究

多柱汉诺塔最优算法设计探究引言汉诺塔算法一直是算法设计科目的最具代表性的研究问题,本文关注于如何设计多柱汉诺塔最优算法的探究。最简单的汉诺塔是三个柱子(A、B、C),因此多柱汉诺塔的柱子个数M≥3。

多柱汉诺塔最优算法设计探究

 

引言

汉诺塔算法一直是算法设计科目的最具代表性的研究问题,本文关注于如何设计多柱汉诺塔最优算法的探究。最简单的汉诺塔是三个柱子(ABC),因此多柱汉诺塔的柱子个数M3。下面从三柱汉诺塔说起,慢慢深入我们要关心的问题。

1. 三柱汉诺塔

三柱汉诺塔是经典的汉诺塔问题,在算法设计中是递归算法的典型问题。其算法是这样的首先把柱上面的n- 1 个碟子通过柱移到柱上【T(n-1)步】,然后把柱剩下的一个碟子移到柱上【1步】最后把柱上所有的碟子通过柱移到柱上【T(n-1)步】。很容易得到算法的递归方程为:T(n)=2*T(n-1)+1,因此,不难算出步数是T(n)=2^n-1。对于三柱汉诺塔的算法的正确性自然是毫无争议的,我们需要的是从三柱汉诺塔的设计中引申出多柱汉诺塔的设计方法。

2. 四柱汉诺塔

四柱汉诺塔并不是仅仅是多了一根柱子那么简单,所以我们先尝试从正常的思维出发来探究如何使移动步数最少。

首先我们会想到,三柱汉诺塔需要借助另一个柱子存放前n-1个盘子,再把第n个盘子移动到目的位置。顺其自然的,四柱汉诺塔由于多了一个柱子,所以移动起来就更方便了,我们可以多留下一个盘子n-2,而不让它借位到其他柱子直接移动到目的位置。这样我们就得出算法的基本流程:

(1)       A借助CD n-2个盘子移动到B上。

(2)       n-2移动到C上。

(3)       n-1移动到D上。

(4)       n-2移动到D上。

(5)       B借助AC n-2个盘子移动到D上。

另外,这么设计是符合正常思维原则的。以为随着柱子的个数增多,我们希望每次移动的时候盘子尽可能不发生折叠,也就是说我们希望除了需要借助存放n-2个盘子的柱子。那么剩下的两个柱子可以允许至多两个盘子不发生折叠就能直接移动到目的位置,这样才使得移动起来比较方便,步骤也会比较少。事实真的是如此吗?我们具体分析一下算法。

按照以上设计的算法流程,我们得到递归方程:F(n)=2*F(n-2)+3。因此得到移动步数为:F(n)=4*2^(n/2)-3n为奇数;F(n)=6*2^(n/2-1)-3n为偶数。下边列出6个盘子的移动步数:

n      1     2     3     4     5     6

F(n)  1     3     5     9     13    21

       到这里,我们已经看出我们的设计的算法已经和经典的汉诺塔算法几乎如出一辙了,甚至是如此的对称和谐!基于此我们甚至可以推广到M(M3)个柱子的情况,来得到我们希望的最优解,假设柱子编号为123…M算法主题框架流程应该如下:

(1)       1柱借助3…M柱子将n-(M-2)个盘子移动到2柱上。

(2)       M-2个通过3…M-1柱简单的移动到M柱上【2*(M-2)-1步骤】。

(3)       2柱借助13…M-1柱子将n-(M-2)个盘子移动到M柱上。

具体步骤和四柱类似,不再做具体分析。这样我们看到我们自己亲手构建的算法模式如此完美,我们甚至不忍心去破坏它。但是我很遗憾的告诉自己,这种算法虽然正确,却不是最优!!!比如,对于6个盘子4个柱子的汉诺塔,按照我们的想法是保留2个盘子进行移动。现在假如我们保留3个盘子,因此上边的三个盘子按照4柱汉诺塔规则移动到B,步数应该是5(已经算出,可以验证),剩下三个盘子按照3柱汉诺塔规则移动到D上,步数应该是2^3-1=7步,然后B上的三个盘子移动到D上仍然是5步,总步数为5+7+5=17步<21步!现在我们可以确信的告诉自己,我们的想法太“天真”了。虽然我们想到让盘子尽量不发生重叠来保证步数的最少,但是这并不能绝对保证。或许在盘子较少的情况下是可行的,但是盘子增多时,那些多余的只有一个盘子的柱子是可以加以利用的。虽然这么做加多了每次的移动步数,但是却从另一个侧面减少了递归的数量,因此我们需要从这里边找一个平衡点。

从上边的例子中,我们得到一个启示:在递归程序中剩余盘子的个数并不一定是M-2,也有可能是M-1,我们假设剩余盘子是M-r,那么r到底取得多少才合适呢?其实,早在1941年,一位名叫J. S. Frame的人在《美国数学月刊》上提出了一种解决四柱汉诺塔问题的算法,这是人们熟知的Frame算法:

1)用4柱汉诺塔算法把A柱上部分的n- r个碟子通过C柱和D柱移到B柱上【F( n- r )步】。

2)用3柱汉诺塔经典算法把A柱上剩余的r个碟子通过C柱移到D柱上【2^r-1步】。

3)用4柱汉诺塔算法把B柱上的n-r个碟子通过A柱和C柱移到D柱上【F(n-r)步】。

4)依据上边规则求出所有r1rn)情况下步数f(n),取最小值得最终解。

因此Frame算法的递归方程如下:

F(n)=min(2*F(n-r)+2^r-1),(1rn)。

通过这个方程我们能得到所有4柱汉诺塔的步骤个数,同时也有人证明[1]了,对于四柱汉诺塔,当r=(sqrt(8*n+1)-1)/2时,能保证f(n)取得最小值F(n)=(n-(r^2-r+2)/2)*2^r+1。所以算法的复杂度是F(n)=O(sqrt(2*n)*2^ sqrt(2*n))。从这这个方程中也可以看出,在n<6的时候,我们可以验证是和我们起初的构想的结构是相同的,但是当n再增多时就不是当初想的那样了。

3. 多柱汉诺塔

基于四柱汉诺塔的Frame算法,我们可以引申到多柱(M)汉诺塔的情况,我们简称M柱汉诺塔算法:

1)用M柱汉诺塔算法把1柱上部分的n-r个碟子通过3…M柱移到2柱上【M( n- r )步】。

2)用M-1柱汉诺塔算法把1柱上剩余的r个碟子通过3…M-1柱移到M柱上【(r)步】。

3)用M柱汉诺塔算法把2柱上的n-r个碟子通过1柱和3…M柱移到M柱上【M( n- r )步】。

4)依据上边规则求出所有r1rn)情况下步数m(n),取最小值得最终解M(n)

4柱汉诺塔的递归方程和结果公示中我们可以看出,随着柱子数量的增加,算法的复杂程度也是不断地增加。对于解决M柱汉诺塔问题需要使用M-1柱汉诺塔的算法,因此除了算法解决问题需要递归外,算法的流程本身也需要递归,这种递归结构已经远远地复杂于当前所接触的递归算法。如果有兴趣可以尝试去设计这种算法,算法所涉及的参数应该有盘子的个数n、柱子的个数m、算法的编号num、参数r等信息。因为需要根据不同柱子情况下通过循环和递归找出最合适的r值,所以这种算法的复杂度肯定相当高。不过我们仅仅是为了探究如何取得最优算法,所以具体实现就不再赘述了。

总结

通过以上的讨论,我们从一般的思维——不折叠盘子,出发去找多柱汉诺塔的最优解,但是结果并没有成功——盘子多时有可能柱子没有充分利用。后来通过前人提出的Frame算法引申出多柱汉诺塔算法,并大致描述了多柱汉诺塔算法的双重嵌套递归结构——算法问题的递归以及算法本身的递归实现。这种罕见的递归程序结构给我们在算法设计方面开阔了新的视野,希望不久的将来能找到更好地算法设计方法来解决多柱汉诺塔的问题。

参考文献

1.《四柱汉诺塔之初步探究》杨楷 徐川北京大学计算机科学与技术系北京, 100871) 北京大学学报自然科学版) , 40 , 2004 


推荐阅读
  • 一、Hadoop来历Hadoop的思想来源于Google在做搜索引擎的时候出现一个很大的问题就是这么多网页我如何才能以最快的速度来搜索到,由于这个问题Google发明 ... [详细]
  • 本文介绍了闭包的定义和运转机制,重点解释了闭包如何能够接触外部函数的作用域中的变量。通过词法作用域的查找规则,闭包可以访问外部函数的作用域。同时还提到了闭包的作用和影响。 ... [详细]
  • CSS3选择器的使用方法详解,提高Web开发效率和精准度
    本文详细介绍了CSS3新增的选择器方法,包括属性选择器的使用。通过CSS3选择器,可以提高Web开发的效率和精准度,使得查找元素更加方便和快捷。同时,本文还对属性选择器的各种用法进行了详细解释,并给出了相应的代码示例。通过学习本文,读者可以更好地掌握CSS3选择器的使用方法,提升自己的Web开发能力。 ... [详细]
  • 本文介绍了Java工具类库Hutool,该工具包封装了对文件、流、加密解密、转码、正则、线程、XML等JDK方法的封装,并提供了各种Util工具类。同时,还介绍了Hutool的组件,包括动态代理、布隆过滤、缓存、定时任务等功能。该工具包可以简化Java代码,提高开发效率。 ... [详细]
  • 本文介绍了C#中生成随机数的三种方法,并分析了其中存在的问题。首先介绍了使用Random类生成随机数的默认方法,但在高并发情况下可能会出现重复的情况。接着通过循环生成了一系列随机数,进一步突显了这个问题。文章指出,随机数生成在任何编程语言中都是必备的功能,但Random类生成的随机数并不可靠。最后,提出了需要寻找其他可靠的随机数生成方法的建议。 ... [详细]
  • qt学习(六)数据库注册用户的实现方法
    本文介绍了在qt学习中实现数据库注册用户的方法,包括登录按钮按下后出现注册页面、账号可用性判断、密码格式判断、邮箱格式判断等步骤。具体实现过程包括UI设计、数据库的创建和各个模块调用数据内容。 ... [详细]
  • “你永远都不知道明天和‘公司的意外’哪个先来。”疫情期间,这是我们最战战兢兢的心情。但是显然,有些人体会不了。这份行业数据,让笔者“柠檬” ... [详细]
  • 生成对抗式网络GAN及其衍生CGAN、DCGAN、WGAN、LSGAN、BEGAN介绍
    一、GAN原理介绍学习GAN的第一篇论文当然由是IanGoodfellow于2014年发表的GenerativeAdversarialNetworks(论文下载链接arxiv:[h ... [详细]
  • [译]技术公司十年经验的职场生涯回顾
    本文是一位在技术公司工作十年的职场人士对自己职业生涯的总结回顾。她的职业规划与众不同,令人深思又有趣。其中涉及到的内容有机器学习、创新创业以及引用了女性主义者在TED演讲中的部分讲义。文章表达了对职业生涯的愿望和希望,认为人类有能力不断改善自己。 ... [详细]
  • 无线认证设置故障排除方法及注意事项
    本文介绍了解决无线认证设置故障的方法和注意事项,包括检查无线路由器工作状态、关闭手机休眠状态下的网络设置、重启路由器、更改认证类型、恢复出厂设置和手机网络设置等。通过这些方法,可以解决无线认证设置可能出现的问题,确保无线网络正常连接和上网。同时,还提供了一些注意事项,以便用户在进行无线认证设置时能够正确操作。 ... [详细]
  • 本文介绍了游戏开发中的人工智能技术,包括定性行为和非定性行为的分类。定性行为是指特定且可预测的行为,而非定性行为则具有一定程度的不确定性。其中,追逐算法是定性行为的具体实例。 ... [详细]
  • JavaScript设计模式之策略模式(Strategy Pattern)的优势及应用
    本文介绍了JavaScript设计模式之策略模式(Strategy Pattern)的定义和优势,策略模式可以避免代码中的多重判断条件,体现了开放-封闭原则。同时,策略模式的应用可以使系统的算法重复利用,避免复制粘贴。然而,策略模式也会增加策略类的数量,违反最少知识原则,需要了解各种策略类才能更好地应用于业务中。本文还以员工年终奖的计算为例,说明了策略模式的应用场景和实现方式。 ... [详细]
  • 本文介绍了PhysioNet网站提供的生理信号处理工具箱WFDB Toolbox for Matlab的安装和使用方法。通过下载并添加到Matlab路径中或直接在Matlab中输入相关内容,即可完成安装。该工具箱提供了一系列函数,可以方便地处理生理信号数据。详细的安装和使用方法可以参考本文内容。 ... [详细]
  • 本文详细介绍了相机防抖的设置方法和使用技巧,包括索尼防抖设置、VR和Stabilizer档位的选择、机身菜单设置等。同时解释了相机防抖的原理,包括电子防抖和光学防抖的区别,以及它们对画质细节的影响。此外,还提到了一些运动相机的防抖方法,如大疆的Osmo Action的Rock Steady技术。通过本文,你将更好地理解相机防抖的重要性和使用技巧,提高拍摄体验。 ... [详细]
  • 图解redis的持久化存储机制RDB和AOF的原理和优缺点
    本文通过图解的方式介绍了redis的持久化存储机制RDB和AOF的原理和优缺点。RDB是将redis内存中的数据保存为快照文件,恢复速度较快但不支持拉链式快照。AOF是将操作日志保存到磁盘,实时存储数据但恢复速度较慢。文章详细分析了两种机制的优缺点,帮助读者更好地理解redis的持久化存储策略。 ... [详细]
author-avatar
mobiledu2502928947
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有