热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

给iOS开发者的GCD用户手册

GrandCentralDispatch,或者GCD,是一个极其强大的工具。它给你一些底层的组件,像队列和信号量,让你可以通过一些有趣的方式来获得有用的多线程效果。可惜的是,这个基

Grand Central Dispatch,或者GCD,是一个极其强大的工具。它给你一些底层的组件,像队列和信号量,让你可以通过一些有趣的方式来获得有用的多线程效果。可惜的是,这个基于C的API是一个有点神秘,它不会明显的告诉你如何使用这个底层组件来实现更高层次的方法。在这篇文章中,我希望描述那些你可以通过GCD提供给你的底层组件来实现的一些用法。

后台工作

 也许最简单的用法,GCD让你在后台线程上做一些工作,然后回到主线程继续处理,因为像那些属于 UIKit 的组件只能(主要)在主线程中使用。

 在本指南中,我将使用 doSomeExpensiveWork() 方法来表示一些长时间运行的有返回值的任务。

 这种模式可以像这样建立起来:

let defaultPriority = DISPATCH_QUEUE_PRIORITY_DEFAULT
let backgroundQueue = dispatch_get_global_queue(defaultPriority, 0)
dispatch_async(backgroundQueue, {
    let result = doSomeExpensiveWork()
    dispatch_async(dispatch_get_main_queue(), {
        //use `result` somehow
    })
})

 

在实践中,我从不使用任何队列优先级除了 DISPATCH_QUEUE_PRIORITY_DEFAULT 。这返回一个队列,它可以支持数百个线程的执行。如果你的耗性能的工作总是在一个特定的后台队列中发生,你也可用通过 dispatch_queue_create 方法来创建自己的队列。 dispatch_queue_create 可以创建一个任意名称的队列,无论它是串行的还是并行的。

注意每一个调用使用 dispatch_async ,不使用 dispatch_sync 。dispatch_async 在 block 执行前返回,而dispatch_sync 会等到 block 执行完毕才返回。内部的调用可以使用 dispatch_sync(因为不管它什么时候返回),但外部必须调用 dispatch_async (否则,主线程会被阻塞)。

 

创建单例

dispatch_once 是一个可以被用来创建单例的API。在 Swift 中它不再是必要的,因为 Swift 中有一个更简单的方法来创建单例。为了以后,当然,我把它写在这里(用 Objective-C )。

+ (instancetype) sharedInstance {  
    static dispatch_once_t onceToken;  
    static id sharedInstance;  
    dispatch_once(&onceToken, ^{  
        sharedInstance = [[self alloc] init];  
    });  
    return sharedInstance;  
} 

 

扁平化一个完整的block

现在 GCD 开始变得有趣了。使用一个信号量,我们可以让一个线程暂停任意时间,直到另一个线程向它发送一个信号。这个信号量,就像 GCD 其余部分一样,是线程安全的,并且他们可以从任何地方被触发。

当你需要去同步一个你不能修改的异步API时,你可以使用信号量解决问题。

// on a background queue
dispatch_semaphore_t semaphore = dispatch_semaphore_create(0)
doSomeExpensiveWorkAsynchronously(completionBlock: {
    dispatch_semaphore_signal(semaphore)
})
dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER)
//the expensive asynchronous work is now done

dispatch_semaphore_wait 会阻塞线程直到 dispatch_semaphore_signal 被调用。这就意味着 signal 一定要在另外一个线程中被调用,因为当前线程被完全阻塞。此外,你不应该在在主线程中调用 wait ,只能在后台线程。

在调用 dispatch_semaphore_wait 时你可以选择任意的超时时间,但是我倾向于一直使用 DISPATCH_TIME_FOREVER 。

这可能不是完全显而易见的,为什么你要把已有的一个完整的 block 代码变为扁平化,但它确实很方便。我最近使用的一种情况是,执行一系列必须连续发生的异步任务。这个使用这种方式的简单抽象被称作 AsyncSerialWorker :

typealias DOneBlock= () -> ()
typealias WorkBlock = (DoneBlock) -> ()

class AsyncSerialWorker {
    private let serialQueue = dispatch_queue_create("com.khanlou.serial.queue", DISPATCH_QUEUE_SERIAL)

    func enqueueWork(work: WorkBlock) {
        dispatch_async(serialQueue) {
            let semaphore = dispatch_semaphore_create(0)
            work({
                dispatch_semaphore_signal(semaphore)
            })
            dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER)
        }
    }
}

这一小类可以创建一个串行队列,并允许你将工作添加到 block 中。当你的工作完成后, WorkBlock 会调用 DoneBlock ,开启信号量,并允许串行队列继续。

 

限制并发 block 的数量

在前面的例子中,信号量作为一个简单的标志,但它也可以被用来作为一种有限的资源计数器。如果你想在一个特定资源上打开特定数量的连接,你可以使用下面的代码:

class LimitedWorker {
    private let cOncurrentQueue= dispatch_queue_create("com.khanlou.concurrent.queue", DISPATCH_QUEUE_CONCURRENT)
    private let semaphore: dispatch_semaphore_t

    init(limit: Int) {
        semaphore = dispatch_semaphore_create(limit)
    }

    func enqueueWork(work: () -> ()) {
        dispatch_async(concurrentQueue) {
            dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER)
            work()
            dispatch_semaphore_signal(semaphore)
        }
    }
}

这个例子从苹果的Concurrency Programming Guide拿来的。他们可以更好的解释在这里发生了什么:

当你创建一个信号量时,你可以指定你的可用资源的数量。这个值是信号量的初始计数变量。你每一次等待信号量发送信号时,这个 dispatch_semaphore_wait 方法使计数变量递减1。如果产生的值是负的,则函数告诉内核来阻止你的线程。在另一端,这个 dispatch_semaphore_signal 函数递增count变量用1表示资源已被释放。如果有任务阻塞和等待资源,其中一个随即被放行并进行它的工作。

其效果类似于 maxConcurrentOperationCount 在 NSOperationQueue 。如果你使用原 GCD队 列而不是 NSOperationQueue,你可以使用信号庄主来限制同时执行的 block 数量。

一个值得注意的就是,每次你调用 enqueueWork ,如果你打开信号量的限制,就会启动一个新线程。如果你有一个低限并且大量工作的队列,您可以创建数百个线程。一如既往,先配置文件,然后更改代码。

 

等待许多并发任务来完成

如果你有多 block 工作来执行,并且在他们集体完成时你需要发一个通知,你可以使用 group 。dispatch_group_async 允许你在队列中添加工作(在 block 里面的工作应该是同步的),并且记录添加了多少了项目。注意,在同一个 dispatch group 中可以将工作添加到不同的队列中,并且可以跟踪它们。当所有跟踪的工作完成,这个 block 开始运行 dispatch_group_notify,就像是一个完整的 block 。

dispatch_group_t group = dispatch_group_create()
for item in someArray {
    dispatch_group_async(group, backgroundQueue, {
        performExpensiveWork(item: item)
    })
}
dispatch_group_notify(group, dispatch_get_main_queue(), {
    // all the work is complete
}

 

拥有一个完整的block,对于扁平化一个功能来说是一个很好的案例。 dispatch group 认为,当它返回时,这个 block 应该完成了,所以你需要这个 block 等待直到其他工作已经完成。

有更多的手动方式来使用 dispatch groups ,特别是如果你耗性能的工作已经是异步的:

// must be on a background thread
dispatch_group_t group = dispatch_group_create()
for item in someArray {
    dispatch_group_enter(group)
    performExpensiveAsyncWork(item: item, completionBlock: {
        dispatch_group_leave(group)
    })
}

dispatch_group_wait(group, DISPATCH_TIME_FOREVER)

// all the work is complete

这段代码是比较复杂的,但通过一行一行的阅读可以帮助理解它。就像信号量,groups 也还保持线程安全,是一个你可以操作的内部计数器。您可以使用此计数器来确保在执行完成 block 之前,多个长的运行任务都已完成。使用 “enter” 递增计数器,并用 “leave” 递减计数器。 dispatch_group_async 为你处理所有的这些细节,所以我愿意尽可能的使用它。

在这段代码的最后一点是 wait 方法:它会阻塞线程,并等待计数器为0后,继续执行。注意,即使你使用了enter/leaveAPI,你也可以在在队列中添加一个 dispatch_group_notify block.反过来也是对的:当你使用 dispatch_group_async API时你也可以使用 dispatch_group_wait 。

dispatch_group_wait,就像dispatch_semaphore_wait一样,可以设置超时。再一次声明,DISPATCH_TIME_FOREVER 已非常足够使用, 我从未觉得需要使用其他的来设置超时。当然就像 dispatch_semaphore_wait 一样,永远不要在主线程使用dispatch_group_wait 。

两者之间最大的区别是,使用 notify 可以完全从主线程调用,而使用 wait,必须发生在后台队列(至少 wait 的部分,因为它会完全阻塞当前队列)。

 

隔离队列

Swift 语言的 Dictionary (和 Array )类型都是值类型。 当他们被改变时, 他们的引用会完全被新的结构给替代。当然,因为更新实例变量的 Swift 对象不是原子性的,它们不是线程安全的。双线程可以在同一时间更新一个字典(例如,增加一个值),并且两个尝试写在同一块内存,这可能导致内存损坏。我们可以使用隔离队列来实现线程安全。 让我们创建一个identity map。 identity map 是一个字典,将项目从其ID 属性映射到模型对象。

class IdentityMap {
    var dictionary = Dictionary()

    func object(forID ID: String) -> T? {
        return dictionary[ID] as T?
    }

    func addObject(object: T) {
        dictionary[object.ID] = object
    }
}

这个对象基本上是一个字典的包装器。如果我们的方法 addObject 同一时间被多个线程所调用,它可能会损害内存,因为这些线程对对同一个引用进行处理。这被称之为 readers-writers problem。总之,我们可以同时有多个读者阅读,但是只有一个线程可以在任何给定的时间写。 幸运的是,GCD 给了我们很好的工具去处理这样的情况。我们可以使用以下四种 API :

  • dispatch_sync

  • dispatch_async

  • dispatch_barrier_sync

  • dispatch_barrier_async

我们理想的情况是,读同步,同时,而写可以异步,当引用该对象时必须是唯一的。 GCD 的 barrier API集可以做一些特别的事情:他们执行 block 之前必须等到队列完全空了。使用 barrier API去进行字典写入的操作将会被限制,这样确保我们永远不会有任何写入发生在同一时间,无论是读取或是写入。

class IdentityMap {
    var dictionary = Dictionary()
    let accessQueue = dispatch_queue_create("com.khanlou.isolation.queue", DISPATCH_QUEUE_CONCURRENT)

    func object(withID ID: String) -> T? {
        var result: T? = nil
        dispatch_sync(accessQueue, {
            result = dictionary[ID] as T?
        })
        return result
    }

    func addObject(object: T) {
        dispatch_barrier_async(accessQueue, {
            dictionary[object.ID] = object
        })
    }
}

dispatch_sync 将 block 添加到我们的隔离队列,然后等待它在返回之前执行。这样,我们就会有我们的同步阅读的结果。(如果我们没有做到同步,我们的 getter 方法可能需要一个完成的 block 。)因为 accessQueue 是并发的,这些同步读取就能同时发生。 dispatch_barrier_async 将 block 添加到隔离队列。这个 async 部分意味着它将实际执行的 block 之前返回(执行写入操作)。这对我们的表现有好处,但也有一个缺点是,在 “write” 操作后立即执行 “read” 操作可能会导致获取改变之前的旧数据。 这个 dispatch_barrier_async 的 barrier 部分,意味着它将等待直到当前运行队列中的每个 block 执行完毕后才执行。其他 block 将在它后面排队,当barrier调度完成时执行。

 

总结

Grand Central Dispatch 是一个有很多底层语言的框架。使用它们,这个是我能建立的比较高级的技术。如果有其他一些你使用的GCD的高级用法而我没有罗列在这里,我喜欢听到它们并将它们添加到列表中。


推荐阅读
  • 重入锁(ReentrantLock)学习及实现原理
    本文介绍了重入锁(ReentrantLock)的学习及实现原理。在学习synchronized的基础上,重入锁提供了更多的灵活性和功能。文章详细介绍了重入锁的特性、使用方法和实现原理,并提供了类图和测试代码供读者参考。重入锁支持重入和公平与非公平两种实现方式,通过对比和分析,读者可以更好地理解和应用重入锁。 ... [详细]
  • SpringBoot uri统一权限管理的实现方法及步骤详解
    本文详细介绍了SpringBoot中实现uri统一权限管理的方法,包括表结构定义、自动统计URI并自动删除脏数据、程序启动加载等步骤。通过该方法可以提高系统的安全性,实现对系统任意接口的权限拦截验证。 ... [详细]
  • Java容器中的compareto方法排序原理解析
    本文从源码解析Java容器中的compareto方法的排序原理,讲解了在使用数组存储数据时的限制以及存储效率的问题。同时提到了Redis的五大数据结构和list、set等知识点,回忆了作者大学时代的Java学习经历。文章以作者做的思维导图作为目录,展示了整个讲解过程。 ... [详细]
  • 有没有一种方法可以在不继承UIAlertController的子类或不涉及UIAlertActions的情况下 ... [详细]
  • GetWindowLong函数
    今天在看一个代码里头写了GetWindowLong(hwnd,0),我当时就有点费解,靠,上网搜索函数原型说明,死活找不到第 ... [详细]
  • Spring源码解密之默认标签的解析方式分析
    本文分析了Spring源码解密中默认标签的解析方式。通过对命名空间的判断,区分默认命名空间和自定义命名空间,并采用不同的解析方式。其中,bean标签的解析最为复杂和重要。 ... [详细]
  • 阿,里,云,物,联网,net,core,客户端,czgl,aliiotclient, ... [详细]
  • 本文讨论了一个关于cuowu类的问题,作者在使用cuowu类时遇到了错误提示和使用AdjustmentListener的问题。文章提供了16个解决方案,并给出了两个可能导致错误的原因。 ... [详细]
  • 本文介绍了Web学习历程记录中关于Tomcat的基本概念和配置。首先解释了Web静态Web资源和动态Web资源的概念,以及C/S架构和B/S架构的区别。然后介绍了常见的Web服务器,包括Weblogic、WebSphere和Tomcat。接着详细讲解了Tomcat的虚拟主机、web应用和虚拟路径映射的概念和配置过程。最后简要介绍了http协议的作用。本文内容详实,适合初学者了解Tomcat的基础知识。 ... [详细]
  • Java学习笔记之面向对象编程(OOP)
    本文介绍了Java学习笔记中的面向对象编程(OOP)内容,包括OOP的三大特性(封装、继承、多态)和五大原则(单一职责原则、开放封闭原则、里式替换原则、依赖倒置原则)。通过学习OOP,可以提高代码复用性、拓展性和安全性。 ... [详细]
  • 本文介绍了iOS数据库Sqlite的SQL语句分类和常见约束关键字。SQL语句分为DDL、DML和DQL三种类型,其中DDL语句用于定义、删除和修改数据表,关键字包括create、drop和alter。常见约束关键字包括if not exists、if exists、primary key、autoincrement、not null和default。此外,还介绍了常见的数据库数据类型,包括integer、text和real。 ... [详细]
  • Iamtryingtocreateanarrayofstructinstanceslikethis:我试图创建一个这样的struct实例数组:letinstallers: ... [详细]
  • linux进阶50——无锁CAS
    1.概念比较并交换(compareandswap,CAS),是原⼦操作的⼀种,可⽤于在多线程编程中实现不被打断的数据交换操作࿰ ... [详细]
  • java线条处理技术_Java使用GUI绘制线条的示例
    在Java的GUI编程中,如何使用GUI绘制线条?以下示例演示了如何使用Graphics2D类的Line2D对象的draw()方法作为参数来绘制一条线。 ... [详细]
  • 本文介绍了闭包的定义和运转机制,重点解释了闭包如何能够接触外部函数的作用域中的变量。通过词法作用域的查找规则,闭包可以访问外部函数的作用域。同时还提到了闭包的作用和影响。 ... [详细]
author-avatar
谢超4444
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有