热门标签 | HotTags
当前位置:  开发笔记 > 前端 > 正文

Java实现单向链表的基本功能详解

这篇文章主要给大家介绍了关于Java实现单向链表基本功能的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧。

一、前言

最近在回顾数据结构与算法,有部分的算法题用到了栈的思想,说起栈又不得不说链表了。数组和链表都是线性存储结构的基础,栈和队列都是线性存储结构的应用~

本文主要讲解单链表的基础知识点,做一个简单的入门~如果有错的地方请指正

二、回顾与知新

说起链表,我们先提一下数组吧,跟数组比较一下就很理解链表这种存储结构了。

2.1回顾数组

数组我们无论是C、Java都会学过:

  • 数组是一种连续存储线性结构,元素类型相同,大小相等


数组的优点:

  • 存取速度快

数组的缺点:

  • 事先必须知道数组的长度
  • 插入删除元素很慢
  • 空间通常是有限制的
  • 需要大块连续的内存块
  • 插入删除元素的效率很低

2.2链表说明

看完了数组,回到我们的链表:

  • 链表是离散存储线性结构

n个节点离散分配,彼此通过指针相连,每个节点只有一个前驱节点,每个节点只有一个后续节点,首节点没有前驱节点,尾节点没有后续节点。


链表优点:

  • 空间没有限制
  • 插入删除元素很快

链表缺点:

  • 存取速度很慢

链表相关术语介绍,我还是通过上面那个图来说明吧:

确定一个链表我们只需要头指针,通过头指针就可以把整个链表都能推导出来了~

链表又分了好几类:

1、单向链表

  • 一个节点指向下一个节点

2、双向链表

  • 一个节点有两个指针域

3、循环链表

  • 能通过任何一个节点找到其他所有的节点,将两种(双向/单向)链表的最后一个结点指向第一个结点从而实现循环

操作链表要时刻记住的是:

节点中指针域指向的就是一个节点了!

三、Java实现链表

算法:

  • 遍历
  • 查找
  • 清空
  • 销毁
  • 求长度
  • 排序
  • 删除节点
  • 插入节点

首先,我们定义一个类作为节点

  • 数据域
  • 指针域

为了操作方便我就直接定义成public了。

public class Node {

 //数据域
 public int data;
 //指针域,指向下一个节点
 public Node next;
 public Node() {
 }

 public Node(int data) {
 this.data = data;
 }

 public Node(int data, Node next) {
 this.data = data;
 this.next = next;
 }
}

3.1创建链表(增加节点)

向链表中插入数据:

  • 找到尾节点进行插入
  • 即使头节点.next为null,不走while循环,也是将头节点与新节点连接的(我已经将head节点初始化过了,因此没必要判断头节点是否为null)~
 /**
 * 向链表添加数据
 *
 * @param value 要添加的数据
 */
 public static void addData(int value) {
 //初始化要加入的节点
 Node newNode = new Node(value);
 //临时节点
 Node temp = head;
 // 找到尾节点
 while (temp.next != null) {
 temp = temp.next;
 }
 // 已经包括了头节点.next为null的情况了~
 temp.next = newNode;
 }

3.2遍历链表

上面我们已经编写了增加方法,现在遍历一下看一下是否正确~~~

从首节点开始,不断往后面找,直到后面的节点没有数据:

 /**
 * 遍历链表
 *
 * @param head 头节点
 */
 public static void traverse(Node head) {
 //临时节点,从首节点开始
 Node temp = head.next;
 while (temp != null) {
 System.out.println("关注公众号Java3y:" + temp.data);
 //继续下一个
 temp = temp.next;
 }
 }

结果:

 

3.3插入节点

  • 插入一个节点到链表中,首先得判断这个位置是否是合法的,才能进行插入~
  • 找到想要插入的位置的上一个节点就可以了~
 /**
 * 插入节点
 *
 * @param head 头指针
 * @param index 要插入的位置
 * @param value 要插入的值
 */
 public static void insertNode(Node head, int index, int value) {
 //首先需要判断指定位置是否合法,
 if (index <1 || index > linkListLength(head) + 1) {
 System.out.println("插入位置不合法。");
 return;
 }
 //临时节点,从头节点开始
 Node temp = head;
 //记录遍历的当前位置
 int currentPos = 0;
 //初始化要插入的节点
 Node insertNode = new Node(value);
 while (temp.next != null) {
 //找到上一个节点的位置了
 if ((index - 1) == currentPos) {
 //temp表示的是上一个节点
 //将原本由上一个节点的指向交由插入的节点来指向
 insertNode.next = temp.next;
 //将上一个节点的指针域指向要插入的节点
 temp.next = insertNode;
 return;
 }
 currentPos++;
 temp = temp.next;
 }
 }

3.4获取链表的长度

获取链表的长度就很简单了,遍历一下,每得到一个节点+1即可~

 /**
 * 获取链表的长度
 * @param head 头指针
 */
 public static int linkListLength(Node head) {
 int length = 0;
 //临时节点,从首节点开始
 Node temp = head.next;
 // 找到尾节点
 while (temp != null) {
 length++;
 temp = temp.next;
 }
 return length;
 }

3.5删除节点

删除某个位置上的节点其实是和插入节点很像的, 同样都要找到上一个节点。将上一个节点的指针域改变一下,就可以删除了~

 /**
 * 根据位置删除节点
 *
 * @param head 头指针
 * @param index 要删除的位置
 */
 public static void deleteNode(Node head, int index) {
 //首先需要判断指定位置是否合法,
 if (index <1 || index > linkListLength(head) + 1) {
  System.out.println("删除位置不合法。");
  return;
 }

 //临时节点,从头节点开始
 Node temp = head;
 //记录遍历的当前位置
 int currentPos = 0;
 while (temp.next != null) {
  //找到上一个节点的位置了
  if ((index - 1) == currentPos) {
  //temp表示的是上一个节点
  //temp.next表示的是想要删除的节点
  //将想要删除的节点存储一下
  Node deleteNode = temp.next;
  //想要删除节点的下一个节点交由上一个节点来控制
  temp.next = deleteNode.next;
  //Java会回收它,设置不设置为null应该没多大意义了(个人觉得,如果不对请指出哦~)
  deleteNode = null;
  return;
  }
  currentPos++;
  temp = temp.next;
 }
 }

3.6对链表进行排序

前面已经讲过了8种的排序算法了【八种排序算法总结】,这次挑简单的冒泡排序吧(其实我是想写快速排序的,尝试了一下感觉有点难.....)

 /**
 * 对链表进行排序
 *
 * @param head
 *
 */
 public static void sortLinkList(Node head) {
 Node currentNode;
 Node nextNode;
 for (currentNode = head.next; currentNode.next != null; currentNode = currentNode.next) {
  for (nextNode = head.next; nextNode.next != null; nextNode = nextNode.next) {
  if (nextNode.data > nextNode.next.data) {
   int temp = nextNode.data;
   nextNode.data = nextNode.next.data;
   nextNode.next.data = temp;
  }
  }
 }
 }

3.7找到链表中倒数第k个节点

这个算法挺有趣的:设置两个指针p1、p2,让p2比p1快k个节点,同时向后遍历,当p2为空,则p1为倒数第k个节点

 /**
 * 找到链表中倒数第k个节点(设置两个指针p1、p2,让p2比p1快k个节点,同时向后遍历,当p2为空,则p1为倒数第k个节点
 *
 * @param head
 * @param k 倒数第k个节点
 */
 public static Node findKNode(Node head, int k) {
 if (k <1 || k > linkListLength(head))
  return null;
 Node p1 = head;
 Node p2 = head;
 // p2比怕p1快k个节点
 for (int i = 0; i 

3.8删除链表重复数据

跟冒泡排序差不多,只要它相等,就能删除了~

 /**
 * 删除链表重复数据(跟冒泡差不多,等于删除就是了)
 *
 * @param head 头节点
 */
 public static void deleteDuplecate(Node head) {
 //临时节点,(从首节点开始-->真正有数据的节点)
 Node temp = head.next;

 //当前节点(首节点)的下一个节点
 Node nextNode = temp.next;
 while (temp.next != null) {
  while (nextNode.next != null) {
  if (nextNode.next.data == nextNode.data) {
   //将下一个节点删除(当前节点指向下下个节点)
   nextNode.next = nextNode.next.next;
  } else {

   //继续下一个
   nextNode = nextNode.next;
  }
  }
  //下一轮比较
  temp = temp.next;
 }
 }

3.9查询链表的中间节点

这个算法也挺有趣的:一个每次走1步,一个每次走两步,走两步的遍历完,然后走一步的指针,那就是中间节点

 /**
 * 查询单链表的中间节点
 */
 public static Node searchMid(Node head) {
 Node p1 = head;
 Node p2 = head;
 // 一个走一步,一个走两步,直到为null,走一步的到达的就是中间节点
 while (p2 != null && p2.next != null && p2.next.next != null) {
  p1 = p1.next;
  p2 = p2.next.next;
 }
 return p1;
 }

3.10通过递归从尾到头输出单链表

 /**
 * 通过递归从尾到头输出单链表
 *
 * @param head 头节点
 */
 public static void printListReversely(Node head) {
 if (head != null) {
  printListReversely(head.next);
  System.out.println(head.data);
 }
 }

3.11反转链表

 /**
 * 实现链表的反转
 *
 * @param node 链表的头节点
 */
 public static Node reverseLinkList(Node node) {
 Node prev ;
 if (node == null || node.next == null) {
  prev = node;
 } else {
  Node tmp = reverseLinkList(node.next);
  node.next.next = node;
  node.next = null;
  prev = tmp;
 }
 return prev;
 }

反转链表参考自:https://www.jb51.net/article/136185.htm

四、最后

理解链表本身并不难,但做相关的操作就弄得头疼,head.next next next next ....(算法这方面我还是薄弱啊..脑子不够用了.....)写了两天就写了这么点东西...

操作一个链表只需要知道它的头指针就可以做任何操作了

1、添加数据到链表中

  • 遍历找到尾节点,插入即可(只要while(temp.next != null),退出循环就会找到尾节点)

2、遍历链表

  • 从首节点(有效节点)开始,只要不为null,就输出

3、给定位置插入节点到链表中

  • 首先判断该位置是否有效(在链表长度的范围内)
  • 找到想要插入位置的上一个节点
    将原本由上一个节点的指向交由插入的节点来指向
    上一个节点指针域指向想要插入的节点

4、获取链表的长度

  • 每访问一次节点,变量++操作即可

5、删除给定位置的节点

  • 首先判断该位置是否有效(在链表长度的范围内)
  • 找到想要插入位置的上一个节点
    将原本由上一个节点的指向后面一个节点

6、对链表进行排序

  • 使用冒泡算法对其进行排序

7、找到链表中倒数第k个节点

  • 设置两个指针p1、p2,让p2比p1快k个节点,同时向后遍历,当p2为空,则p1为倒数第k个节点

8、删除链表重复数据

  • 操作跟冒泡排序差不多,只要它相等,就能删除了~

9、查询链表的中间节点

  • 这个算法也挺有趣的:一个每次走1步,一个每次走两步,走两步的遍历完,然后走一步的指针,那就是中间节点

10、递归从尾到头输出单链表

  • 只要下面还有数据,那就往下找,递归是从最后往前翻。

11、反转链表

  • 有递归和非递归两种方式,我觉得是挺难的。可以到我给出的链接上查阅~

PS:每个人的实现都会不一样,所以一些小细节难免会有些变动,也没有固定的写法,能够实现对应的功能即可~

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对的支持。

参考资料:

  • http://www.cnblogs.com/whgk/p/6589920.html
  • https://www.cnblogs.com/bywallance/p/6726251.html

推荐阅读
  • 阿里Treebased Deep Match(TDM) 学习笔记及技术发展回顾
    本文介绍了阿里Treebased Deep Match(TDM)的学习笔记,同时回顾了工业界技术发展的几代演进。从基于统计的启发式规则方法到基于内积模型的向量检索方法,再到引入复杂深度学习模型的下一代匹配技术。文章详细解释了基于统计的启发式规则方法和基于内积模型的向量检索方法的原理和应用,并介绍了TDM的背景和优势。最后,文章提到了向量距离和基于向量聚类的索引结构对于加速匹配效率的作用。本文对于理解TDM的学习过程和了解匹配技术的发展具有重要意义。 ... [详细]
  • 微软头条实习生分享深度学习自学指南
    本文介绍了一位微软头条实习生自学深度学习的经验分享,包括学习资源推荐、重要基础知识的学习要点等。作者强调了学好Python和数学基础的重要性,并提供了一些建议。 ... [详细]
  • 本文详细解析了JavaScript中相称性推断的知识点,包括严厉相称和宽松相称的区别,以及范例转换的规则。针对不同类型的范例值,如差别范例值、统一类的原始范例值和统一类的复合范例值,都给出了具体的比较方法。对于宽松相称的情况,也解释了原始范例值和对象之间的比较规则。通过本文的学习,读者可以更好地理解JavaScript中相称性推断的概念和应用。 ... [详细]
  • Lodop中特殊符号打印设计和预览样式不同的问题解析
    本文主要解析了在Lodop中使用特殊符号打印设计和预览样式不同的问题。由于调用的本机ie引擎版本可能不同,导致在不同浏览器下样式解析不同。同时,未指定文字字体和样式设置也会导致打印设计和预览的差异。文章提出了通过指定具体字体和样式来解决问题的方法,并强调了以打印预览和虚拟打印机测试为准。 ... [详细]
  • Final关键字的含义及用法详解
    本文详细介绍了Java中final关键字的含义和用法。final关键字可以修饰非抽象类、非抽象类成员方法和变量。final类不能被继承,final类中的方法默认是final的。final方法不能被子类的方法覆盖,但可以被继承。final成员变量表示常量,只能被赋值一次,赋值后值不再改变。文章还讨论了final类和final方法的应用场景,以及使用final方法的两个原因:锁定方法防止修改和提高执行效率。 ... [详细]
  • 本文介绍了求解gcdexgcd斐蜀定理的迭代法和递归法,并解释了exgcd的概念和应用。exgcd是指对于不完全为0的非负整数a和b,gcd(a,b)表示a和b的最大公约数,必然存在整数对x和y,使得gcd(a,b)=ax+by。此外,本文还给出了相应的代码示例。 ... [详细]
  • EPICS Archiver Appliance存储waveform记录的尝试及资源需求分析
    本文介绍了EPICS Archiver Appliance存储waveform记录的尝试过程,并分析了其所需的资源容量。通过解决错误提示和调整内存大小,成功存储了波形数据。然后,讨论了储存环逐束团信号的意义,以及通过记录多圈的束团信号进行参数分析的可能性。波形数据的存储需求巨大,每天需要近250G,一年需要90T。然而,储存环逐束团信号具有重要意义,可以揭示出每个束团的纵向振荡频率和模式。 ... [详细]
  • 在Android开发中,使用Picasso库可以实现对网络图片的等比例缩放。本文介绍了使用Picasso库进行图片缩放的方法,并提供了具体的代码实现。通过获取图片的宽高,计算目标宽度和高度,并创建新图实现等比例缩放。 ... [详细]
  • 本文介绍了在开发Android新闻App时,搭建本地服务器的步骤。通过使用XAMPP软件,可以一键式搭建起开发环境,包括Apache、MySQL、PHP、PERL。在本地服务器上新建数据库和表,并设置相应的属性。最后,给出了创建new表的SQL语句。这个教程适合初学者参考。 ... [详细]
  • 云原生边缘计算之KubeEdge简介及功能特点
    本文介绍了云原生边缘计算中的KubeEdge系统,该系统是一个开源系统,用于将容器化应用程序编排功能扩展到Edge的主机。它基于Kubernetes构建,并为网络应用程序提供基础架构支持。同时,KubeEdge具有离线模式、基于Kubernetes的节点、群集、应用程序和设备管理、资源优化等特点。此外,KubeEdge还支持跨平台工作,在私有、公共和混合云中都可以运行。同时,KubeEdge还提供数据管理和数据分析管道引擎的支持。最后,本文还介绍了KubeEdge系统生成证书的方法。 ... [详细]
  • 电销机器人作为一种人工智能技术载体,可以帮助企业提升电销效率并节省人工成本。然而,电销机器人市场缺乏统一的市场准入标准,产品品质良莠不齐。创业者在代理或购买电销机器人时应注意谨防用录音冒充真人语音通话以及宣传技术与实际效果不符的情况。选择电销机器人时需要考察公司资质和产品品质,尤其要关注语音识别率。 ... [详细]
  • 这是原文链接:sendingformdata许多情况下,我们使用表单发送数据到服务器。服务器处理数据并返回响应给用户。这看起来很简单,但是 ... [详细]
  • 如何去除Win7快捷方式的箭头
    本文介绍了如何去除Win7快捷方式的箭头的方法,通过生成一个透明的ico图标并将其命名为Empty.ico,将图标复制到windows目录下,并导入注册表,即可去除箭头。这样做可以改善默认快捷方式的外观,提升桌面整洁度。 ... [详细]
  • 本文介绍了数据库的存储结构及其重要性,强调了关系数据库范例中将逻辑存储与物理存储分开的必要性。通过逻辑结构和物理结构的分离,可以实现对物理存储的重新组织和数据库的迁移,而应用程序不会察觉到任何更改。文章还展示了Oracle数据库的逻辑结构和物理结构,并介绍了表空间的概念和作用。 ... [详细]
  • 目录实现效果:实现环境实现方法一:基本思路主要代码JavaScript代码总结方法二主要代码总结方法三基本思路主要代码JavaScriptHTML总结实 ... [详细]
author-avatar
n大牙
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有