热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

微软头条实习生分享深度学习自学指南

本文介绍了一位微软头条实习生自学深度学习的经验分享,包括学习资源推荐、重要基础知识的学习要点等。作者强调了学好Python和数学基础的重要性,并提供了一些建议。
作者 Sanny Kim 
郭一璞 编译 
量子位 出品 | 公众号 QbitAI

跟着网络资料自学、刷MOOC是许多人学深度学习的方式,但深度学习相关资源众多,应该从哪儿开始学呢?

富有自学经验的GitHub用户Sanny Kim贡献出了一份深度学习自学指南。

640?wx_fmt=png

她自学成才,有Udacity、deeplearning.ai、Coursera的一大堆课程认证,甚至连大学都是上的以自学、MOOC著称的Minerva大学,自学卓有成效,曾经在微软做实习软件工程师,现在则是字节跳动(头条)AI实验室的机器学习实习生。

下面,就让我们来看看这份自学指南都包含什么内容吧。由于资料课程非常多,建议大家存下来慢慢看。

学好Python和数学

作为深度学习从业者,最重要的基础,一是代码,二是数学。

代码的选择毋庸置疑,一定要学Python,毕竟这是当今深度学习界最火的语言,没有之一。

而数学一样重要,虽然数学常常难倒英雄汉,不过如果你只是想把深度学习拿来在你的领域试用的话,暂时不需要搞明白太多数学基础,

但是,Sanny Kim建议,熟知数学理论基础,使用深度学习框架会更易懂,因此需要一定的微积分、线性代数和统计学基础,

学Python

Python可以选择下面的课程:

MIT 6.0001课程
https://www.youtube.com/watch?v=ytpJdnlu9ug&list=PLUl4u3cNGP63WbdFxL8giv4yhgdMGaZNA

CodeCademy
https://www.codecademy.com/learn/learn-python

如何像计算机科学家一样思考
http://interactivepython.org/runestone/static/thinkcspy/index.html
备用链接:https://runestone.academy

哈佛CS50
https://www.edx.org/course/cs50s-introduction-to-computer-science

哈佛CS50课程里Python讲得比较少,如果你喜欢阅读,可交互的在线书《如何像计算机科学家一样思考》会更适合你。

学微积分

微积分方面有几个必须搞懂的概念:微分,链式法则偏导数

数学基础好、想要快速学习微积分的同学请戳:

MIT 18.01 单变量微积分
https://www.youtube.com/watch?v=jbIQW0gkgxo&t=1s

数学不太好的同学请戳:

伦纳德教授的微积分1
https://www.youtube.com/watch?v=fYyARMqiaag&list=PLF797E961509B4EB5

已经学过需要复习一下,或者几乎放弃治疗、只想简单了解一下的同学请戳:

可汗学院微积分1
https://www.khanacademy.org/math/calculus-1

补充材料:

3Blue1Brown 微积分的本质
https://www.youtube.com/watch?v=WUvTyaaNkzM&list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr

学线性代数

线代方面有几个必须搞懂的概念:向量,矩阵,矩阵运算,包括加减乘除逆运算。

还是一样,想认认真真搞懂线代的同学请戳:

MIT 18.06 线性代数
https://www.youtube.com/watch?v=ZK3O402wf1c&list=PLE7DDD91010BC51F8

走马观花的同学请戳:

可汗学院线性代数
https://www.khanacademy.org/math/linear-algebra

戳这个来了解更多实际的写代码方法:

Rachel Thomas的计算线性代数
https://www.youtube.com/watch?v=8iGzBMboA0I&index=1&list=PLtmWHNX-gukIc92m1K0P6bIOnZb-mg0hY

补充材料:

斯坦福CS229线性代数复习资料
http://cs229.stanford.edu/section/cs229-linalg.pdf

3Blue1Brown 线性代数的本质
https://www.youtube.com/watch?v=kjBOesZCoqc&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

概率与统计

概率统计方面有几个必须搞懂的概念:平均值,标准差,分布,采样,贝叶斯定理

哈佛统计110
https://www.youtube.com/watch?v=KbB0FjPg0mw&list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo

可汗学院概率统计
https://www.khanacademy.org/math/statistics-probability

Brandon Foltz统计学101
https://www.youtube.com/user/BCFoltz/videos

补充材料:

斯坦福CS229概率统计复习资料
http://cs229.stanford.edu/section/cs229-prob.pdf

列了这么多数学课,你要是觉得上面这三门课学起来太累,可以只看和深度学习、机器学习相关的部分,那么安利你学习下面这两份材料:

深度学习需要的矩阵微积分
作者:Terence Parr,Jeremy Howard
https://arxiv.org/abs/1802.01528
不想看pdf的手机用户可戳:https://explained.ai/matrix-calculus/index.html

MIT 18.065 数据分析、信号处理和机器学习中的矩阵方法(2018)
作者:Gilbert Strang
https://www.youtube.com/playlist?list=PLUl4u3cNGP63oMNUHXqIUcrkS2PivhN3k

当然,因为数学嘛,毕竟是门大杀器,要是实在学不下去,可以先开始学下面的深度学习部分,看到哪儿原理不懂了,再回来翻资料理解一下。

深度学习入门

现在,恭喜你学会了Python,还搞懂了一部分数学理论知识,终于可以开始学正儿八经的深度学习了。

深度学习入门非常重要的两套课程,分别是

吴恩达的deeplearning.ai
https://www.coursera.org/specializations/deep-learning

Jeremy Howard和Rachel Thomas的fast.ai
http://course.fast.ai/

这两份资料在深度学习MOOC领域几乎无人不知无人不晓了,吴恩达的课程重视理论解释,fast.ai更侧重编码,Sanny Kim是这样学这两套课程的:

1、先看deeplearning.ai的1、2、4、5;
2、在看fast.ai的第一部分;
3、看deeplearning.ai的3;
4、(可选)做deeplearning.ai的作业;
5、把上面的1~4复习一遍。

fast.ai从第二部分开始相对比较难,建议后面再学。另外,想充分利用fast.ai,最好有一块GPU,没有的话就去薅Google羊毛,学习使用Colab(反正将来一定会用到的)。

攻略:学fast.ai,用Colab
https://towardsdatascience.com/fast-ai-lesson-1-on-google-colab-free-gpu-d2af89f53604

最后,给读书党安利:

神经网络与深度学习
作者:Michael Nielsen
http://neuralnetworksanddeeplearning.com/

视频课程

不能光靠MOOC学深度学习,下面这些视频课程也要学习了解一下:

3Blue1Brown的神经网络
https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

Computerphile的神经网络
https://www.youtube.com/playlist?list=PLzH6n4zXuckoezZuZPnXXbvN-9jMFV0qh

Brandon Rohrer的神经网络
https://www.youtube.com/watch?v=ILsA4nyG7I0

Python实用机器学习教程
https://www.youtube.com/watch?v=OGxgnH8y2NM&list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v

对新人友好的博客

刷博客也是自学的重要途径,这里一些经典博客可以作为学习资料:

在处理可视化和动量方面做得非常好的Distill.pub
https://distill.pub/

Andrej Karpathy的老博客
http://karpathy.github.io/

深度强化学习
https://simoninithomas.github.io/Deep_reinforcement_learning_Course/

Towards Data Science
https://towardsdatascience.com/

写代码的资料

Jupyter笔记本:

Jupyter入门
https://www.youtube.com/watch?v=HW29067qVWk

DataCamp Jupyter教程
https://www.datacamp.com/community/tutorials/tutorial-jupyter-notebook?utm

Jupyter的坑,请注意避开
https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/preview?slide=id.g3b600ce1e2_0_0

NumPy:

斯坦福CS231 Numpy教程
http://cs231n.github.io/python-numpy-tutorial/

DataCamp Numpy教程
https://www.datacamp.com/community/tutorials/python-numpy-tutorial

Pandas:

Data School综合教程系列Pandas数据分析
https://www.youtube.com/watch?v=yzIMircGU5I&list=PL5-da3qGB5ICCsgW1MxlZ0Hq8LL5U3u9y

Pandas的代码基础短教程
https://www.youtube.com/watch?v=CmorAWRsCAw&list=PLeo1K3hjS3uuASpe-1LjfG5f14Bnozjwy

Scikit-learn:

Data School scikit-learn教程系列
https://www.youtube.com/watch?v=CmorAWRsCAw&list=PLeo1K3hjS3uuASpe-1LjfG5f14Bnozjwy

Matplotlib:

Sentdex Matplotlib系列
https://www.youtube.com/watch?v=q7Bo_J8x_dw&list=PLQVvvaa0QuDfefDfXb9Yf0la1fPDKluPF

Matplotlib视频教程
https://www.youtube.com/watch?v=b3lK639ymu4&list=PLNmACol6lYY5aGQtxghQTq0bHXYoIMORy

终于能用深度学习了

现在,基础、原理、代码你都学的差不多了,终于可以开始使用深度学习这项大杀器了。

那,拿来干点啥,从什么项目开始下手呢?可以看这些找找灵感:

超厉害的深度学习idea
https://github.com/NirantK/awesome-project-ideas

Kaggle比赛
https://www.kaggle.com/competitions

Kaggle数据集
https://www.kaggle.com/datasets

另外,还需要做处选择,在TensorFlow、PyTorch、Keras等一大堆框架里选边站,找一个你觉得好用的框架。

项目实践好了之后,就可以开始写技术博客啦!

开启新篇章

现在,你终于成为了一个掌握深度学习技能的人,可以考虑在计算机视觉、自然语言处理、机器学习、自动驾驶……等许多领域深入发展了。

不过,Sanny Kim还是建议大家先去学:

fast.ai的第二部分(2018版,2019版还没更新到第二部分)
http://course18.fast.ai/part2.html

可以从这里了解一些前沿的东西,比如GAN、神经翻译、超分辨率之类的,之后就可以选择一个你喜欢的方向深入研究了。

计算机视觉

斯坦福CS231n(2017)
https://www.youtube.com/watch?v=vT1JzLTH4G4&list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk

斯坦福CS231n(2016)
https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC

UCF计算机视觉(2012)
https://www.youtube.com/watch?v=715uLCHt4jE&list=PLd3hlSJsX_ImKP68wfKZJVIPTd8Ie5u-9

斯坦福CS231n不同年份有不同年份的特点,比如2017年有一个关于生成模型的课程,2016年有Jeff Dean的演讲,如果想了解在深度学习爆发之前计算机视觉的发展,可以看最后一个课程。

自然语言处理

斯坦福CS224N NLP深度学习(2019)
https://www.youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z

Stanford CS224N NLP深度学习(2017)
https://www.youtube.com/watch?v=OQQ-W_63UgQ&list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6

CMU NLP神经网络(2019)
https://www.youtube.com/playlist?list=PL8PYTP1V4I8Ajj7sY6sdtmjgkt7eo2VMs

牛津&DeepMind深度学习NLP(2017)
https://www.youtube.com/watch?v=RP3tZFcC2e8&list=PL613dYIGMXoZBtZhbyiBqb0QtgK6oJbpm
GitHub:
https://github.com/oxford-cs-deepnlp-2017/lectures

斯坦福CS224N的NLP、深度学习课程很棒,包含视频、PPT、作业、作业答案甚至还有课堂项目,相比之下2019版本包含了更多新内容。

牛津和DeepMind合作的项目也很不错,还附带了GitHub。

继续研究深度学习

Fullstack深度学习训练营(2019年)
https://fullstackdeeplearning.com/march2019

伯克利CS294深度无监督学习(2019)
https://sites.google.com/view/berkeley-cs294-158-sp19/home

斯坦福CS230深度学习(2018)
https://www.youtube.com/playlist?list=PLoROMvodv4rOABXSygHTsbvUz4G_YQhOb

CMU深度学习课程(2017)
https://www.youtube.com/watch?v=fDlOQrLX8Hs&list=PLpIxOj-HnDsOSL__Buy7_UEVQkyfhHapa

牛津深度学习课程(2015)
https://www.youtube.com/watch?v=PlhFWT7vAEw&list=PLjK8ddCbDMphIMSXn-w1IjyYpHU3DaUYw

Ian Goodfellow的《深度学习》(俗称花书)
https://www.deeplearningbook.org/

NIPS(2017)会议视频
https://nips.cc/Conferences/2017/Videos

ICML(2017)会议视频
https://icml.cc/Conferences/2017/Videos

ICLR(2018)会议视频
https://www.facebook.com/pg/iclr.cc/videos/

强化学习

如果想研究强化学习(RL),那很不幸你前面学的deeplearning.ai和fast.ai里都没有,所以Sanny Kim建议按照下面的顺序学习:

Arxiv Insight的强化学习视频介绍
https://www.youtube.com/watch?v=JgvyzIkgxF0

Jacob Schrum的强化学习简介
https://www.youtube.com/watch?v=3T5eCou2erg&list=PLWi7UcbOD_0u1eUjmF59XW2TGHWdkHjnS

Andrej Karpathy关于深度强化学习的博客文章
http://karpathy.github.io/2016/05/31/rl/

吴恩达关于马尔可夫决策过程的论文第1-2章
http://rll.berkeley.edu/deeprlcoursesp17/docs/ng-thesis.pdf

斯坦福CS234强化学习(2019)
https://www.youtube.com/playlist?list=PLoROMvodv4rOSOPzutgyCTapiGlY2Nd8u

OpenAI深度学习Spinning up(2018)
https://spinningup.openai.com/en/latest/

DeepMind深度学习&强化学习进阶(2018)
https://www.youtube.com/watch?v=iOh7QUZGyiU&list=PLqYmG7hTraZDNJre23vqCGIVpfZ_K2RZs

David Silver强化学习课程
https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLzuuYNsE1EZAXYR4FJ75jcJseBmo4KQ9-

伯克利CS294深层强化学习课程(2017)
http://rll.berkeley.edu/deeprlcoursesp17/

伯克利CS294深度强化学习(2018)
http://rail.eecs.berkeley.edu/deeprlcourse/

强化学习:简介(2018年)
https://drive.google.com/file/d/1opPSz5AZ_kVa1uWOdOiveNiBFiEOHjkG/view

伯克利深度强化学习训练营(2017)
https://www.youtube.com/watch?v=qaMdN6LS9rA&list=PLAdk-EyP1ND8MqJEJnSvaoUShrAWYe51U

MILA强化学习暑期学校(2017)
https://mila.quebec/en/cours/deep-learning-summer-school-2017/

Udacity深度强化学习GitHub Repo
https://github.com/udacity/deep-reinforcement-learning

Thomas Simonini深度强化学习课程
https://simoninithomas.github.io/Deep_reinforcement_learning_Course/

机器学习

想要了解机器学习,吴恩达的课程是十分经典的教材。如果你想学习更多相关的数学理论,可以学加州理工的课程。

吴恩达的机器学习课程(2012)
https://www.coursera.org/learn/machine-learning

加州理工CS156机器学习课程(2012)
http://work.caltech.edu/telecourse.html

Christopher Bishop的《模式识别和机器学习书》(2006)
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

吴恩达《Machine Learning Yearning》
https://www.mlyearning.org/

自动驾驶

如果你对自动驾驶感兴趣,可以去学MIT的课程,包含广泛的相关内容介绍,还有比如Aurora这种专业自动驾驶公司大佬的分享。

MIT自动驾驶课程(2018年)
https://www.youtube.com/watch?v=-6INDaLcuJY&list=PLrAXtmErZgOeiKm4sgNOknGvNjby9efdf

自动驾驶的计算机视觉:问题,数据集和最新技术(2017)
https://arxiv.org/pdf/1704.05519.pdf

ICCV自动驾驶计算机视觉教程(2015)
https://sites.google.com/site/cvadtutorial15/materials

Udacity自动驾驶idea
https://github.com/ndrplz/self-driving-car

各类补充资料

你可能会发现,梯度下降、反向传播,这些问题都出现了

Sebastian Ruder梯度下降博客
http://ruder.io/optimizing-gradient-descent/

CS231n反向传播
http://cs231n.github.io/optimization-2/

重点论文:

AlexNet(2012)
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

VGG(2014)
https://arxiv.org/abs/1409.1556

InceptionNet(2014)
https://arxiv.org/pdf/1409.4842.pdf

ResNet(2015)
https://arxiv.org/abs/1512.03385

生成对抗网络(2014年)
https://arxiv.org/abs/1406.2661

Yolo对象检测(2015)
https://arxiv.org/abs/1506.02640

用深度强化学习玩雅达利游戏(2013)
https://arxiv.org/pdf/1312.5602.pdf

备忘录:

深度学习
https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning

PyTorch
https://www.sznajdman.com/pytorch-cheat-sheet/

Numpy
https://www.datacamp.com/community/blog/python-numpy-cheat-sheet

Pandas
https://www.datacamp.com/community/blog/python-pandas-cheat-sheet

Matplotlib
https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet

Scikit-Learn
https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet

Jupyter Notebook
https://www.datacamp.com/community/blog/jupyter-notebook-cheat-sheet

传送门

GitHub
https://github.com/sannykim/deep-learning-guide

推特
https://twitter.com/sannykimchi/status/1138103256792494085?s=21


小程序|全类别AI学习教程

640?wx_fmt=jpeg

AI社群|与优秀的人交流

640?wx_fmt=jpeg

640?wx_fmt=jpeg

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态

   喜欢就点「在看」吧 ! 



推荐阅读
  • 2018年人工智能大数据的爆发,学Java还是Python?
    本文介绍了2018年人工智能大数据的爆发以及学习Java和Python的相关知识。在人工智能和大数据时代,Java和Python这两门编程语言都很优秀且火爆。选择学习哪门语言要根据个人兴趣爱好来决定。Python是一门拥有简洁语法的高级编程语言,容易上手。其特色之一是强制使用空白符作为语句缩进,使得新手可以快速上手。目前,Python在人工智能领域有着广泛的应用。如果对Java、Python或大数据感兴趣,欢迎加入qq群458345782。 ... [详细]
  • 学习SLAM的女生,很酷
    本文介绍了学习SLAM的女生的故事,她们选择SLAM作为研究方向,面临各种学习挑战,但坚持不懈,最终获得成功。文章鼓励未来想走科研道路的女生勇敢追求自己的梦想,同时提到了一位正在英国攻读硕士学位的女生与SLAM结缘的经历。 ... [详细]
  • Android Studio Bumblebee | 2021.1.1(大黄蜂版本使用介绍)
    本文介绍了Android Studio Bumblebee | 2021.1.1(大黄蜂版本)的使用方法和相关知识,包括Gradle的介绍、设备管理器的配置、无线调试、新版本问题等内容。同时还提供了更新版本的下载地址和启动页面截图。 ... [详细]
  • Android源码深入理解JNI技术的概述和应用
    本文介绍了Android源码中的JNI技术,包括概述和应用。JNI是Java Native Interface的缩写,是一种技术,可以实现Java程序调用Native语言写的函数,以及Native程序调用Java层的函数。在Android平台上,JNI充当了连接Java世界和Native世界的桥梁。本文通过分析Android源码中的相关文件和位置,深入探讨了JNI技术在Android开发中的重要性和应用场景。 ... [详细]
  • 3.223.28周学习总结中的贪心作业收获及困惑
    本文是对3.223.28周学习总结中的贪心作业进行总结,作者在解题过程中参考了他人的代码,但前提是要先理解题目并有解题思路。作者分享了自己在贪心作业中的收获,同时提到了一道让他困惑的题目,即input details部分引发的疑惑。 ... [详细]
  • 合并列值-合并为一列问题需求:createtabletab(Aint,Bint,Cint)inserttabselect1,2,3unionallsel ... [详细]
  • 本文介绍了在Pygame中使用矩形对表面进行涂色的方法。通过查阅Pygame文档中的blit函数,可以了解到如何将一个表面的特定部分复制到另一个表面的指定位置上。具体的解决方法和参数说明在文中都有详细说明。 ... [详细]
  • 云原生边缘计算之KubeEdge简介及功能特点
    本文介绍了云原生边缘计算中的KubeEdge系统,该系统是一个开源系统,用于将容器化应用程序编排功能扩展到Edge的主机。它基于Kubernetes构建,并为网络应用程序提供基础架构支持。同时,KubeEdge具有离线模式、基于Kubernetes的节点、群集、应用程序和设备管理、资源优化等特点。此外,KubeEdge还支持跨平台工作,在私有、公共和混合云中都可以运行。同时,KubeEdge还提供数据管理和数据分析管道引擎的支持。最后,本文还介绍了KubeEdge系统生成证书的方法。 ... [详细]
  • 向QTextEdit拖放文件的方法及实现步骤
    本文介绍了在使用QTextEdit时如何实现拖放文件的功能,包括相关的方法和实现步骤。通过重写dragEnterEvent和dropEvent函数,并结合QMimeData和QUrl等类,可以轻松实现向QTextEdit拖放文件的功能。详细的代码实现和说明可以参考本文提供的示例代码。 ... [详细]
  • 本文讨论了在Windows 8上安装gvim中插件时出现的错误加载问题。作者将EasyMotion插件放在了正确的位置,但加载时却出现了错误。作者提供了下载链接和之前放置插件的位置,并列出了出现的错误信息。 ... [详细]
  • CSS3选择器的使用方法详解,提高Web开发效率和精准度
    本文详细介绍了CSS3新增的选择器方法,包括属性选择器的使用。通过CSS3选择器,可以提高Web开发的效率和精准度,使得查找元素更加方便和快捷。同时,本文还对属性选择器的各种用法进行了详细解释,并给出了相应的代码示例。通过学习本文,读者可以更好地掌握CSS3选择器的使用方法,提升自己的Web开发能力。 ... [详细]
  • 本文讨论了使用差分约束系统求解House Man跳跃问题的思路与方法。给定一组不同高度,要求从最低点跳跃到最高点,每次跳跃的距离不超过D,并且不能改变给定的顺序。通过建立差分约束系统,将问题转化为图的建立和查询距离的问题。文章详细介绍了建立约束条件的方法,并使用SPFA算法判环并输出结果。同时还讨论了建边方向和跳跃顺序的关系。 ... [详细]
  • 知识图谱——机器大脑中的知识库
    本文介绍了知识图谱在机器大脑中的应用,以及搜索引擎在知识图谱方面的发展。以谷歌知识图谱为例,说明了知识图谱的智能化特点。通过搜索引擎用户可以获取更加智能化的答案,如搜索关键词"Marie Curie",会得到居里夫人的详细信息以及与之相关的历史人物。知识图谱的出现引起了搜索引擎行业的变革,不仅美国的微软必应,中国的百度、搜狗等搜索引擎公司也纷纷推出了自己的知识图谱。 ... [详细]
  • Java学习笔记之面向对象编程(OOP)
    本文介绍了Java学习笔记中的面向对象编程(OOP)内容,包括OOP的三大特性(封装、继承、多态)和五大原则(单一职责原则、开放封闭原则、里式替换原则、依赖倒置原则)。通过学习OOP,可以提高代码复用性、拓展性和安全性。 ... [详细]
  • 2022年的风口:你看不起的行业,真的很挣钱!
    本文介绍了2022年的风口,探讨了一份稳定的副业收入对于普通人增加收入的重要性,以及如何抓住风口来实现赚钱的目标。文章指出,拼命工作并不一定能让人有钱,而是需要顺应时代的方向。 ... [详细]
author-avatar
师弟
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有