热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

JSOI2015Salesman(树型DP)

【luogu6082】【题目描述】某售货员小T要到若干城镇去推销商品,由于该地区是交通不便的山区,任意两个城镇之间都只有唯一的可能经过其它城镇的路线。小T可以准确地估计出在每个城镇

【luogu6082】

 【题目描述】

某售货员小T要到若干城镇去推销商品,由于该地区是交通不便的山区,任意两个城镇之间都只有唯一的可能经过其它城镇的路线。

小T 可以准确地估计出在每个城镇停留的净收益。这些净收益可能是负数,即推销商品的利润抵不上花费。

由于交通不便,小T经过每个城镇都需要停留,在每个城镇的停留次数与在该地的净收益无关,因为很多费用不是计次收取的,而每个城镇对小T的商品需求也是相对固定的,停留一次后就饱和了。

每个城镇为了强化治安,对外地人的最多停留次数有严格的规定。

请你帮小T 设计一个收益最大的巡回方案,即从家乡出发,在经过的每个城镇停留,最后回到家乡的旅行方案。

你的程序只需输出最大收益,以及最优方案是否唯一。

方案并不包括路线的细节,方案相同的标准是选择经过并停留的城镇是否相同。因为取消巡回也是一种方案,因此最大收益不会是负数。

小T 在家乡净收益是零,因为在家乡是本地人,家乡对小 T当然没有停留次数的限制。

【Input】

输入的第一行是一个正整数n(5<=n<=100000),表示城镇数目。城镇以1到n的数命名。

小T 的家乡命名为1。

第二行和第三行都包含以空格隔开的n-1个整数,第二行的第i个数表示在城镇i+1停留的净收益。第三行的第i个数表示城镇i+1规定的最大停留次数。

所有的最大停留次数都不小于2。

接下来的n-1行每行两个1到n的正整数x,y,之间以一个空格隔开,表示x,y之间有一条不经过其它城镇的双向道路。

输入数据保证所有城镇是连通的。 

【Output】

输出有两行,第一行包含一个自然数,表示巡回旅行的最大收益。

如果该方案唯一,在第二行输出“solution is unique”,否则在第二行输出“solution is not unique”。

【Sample Input】

  9
  -3 -4 2 4 -2 3 4 6
  4 4 2 2 2 2 2 2
  1 2
  1 3
  1 4
  2 5
  2 6
  3 7
  4 8
  4 9

【Sample Output】

  9

   solution is unique

 

【Solution】
这个题目乍一看是个图诶
但是是DAG
就相当于一棵树
那么考虑到状态不同决策不同
很容易联想到动态规划

对于第一个问题
  关键是考虑每一个点的访问限制
  假设对于当前点i的限制是cnt[i]
  那么最多只能访问其cnt[i] - 1棵子树
  因为要留出一次机会回溯到出发点
  对于家乡的话就初始化成最大值,无限制访问

对于第二个问题
  路径唯一或不唯一
  唯一的情况不用解释
  不唯一的情况: 

  • 存在一种最优方案使得经过的某个点 u 满足dp[u]?=0 。
  • 存在在一种最优方案使得经过的某个点 u 存在至少 cnt[u]? 个儿子, 且第 cnt[u]? 大收益非负的儿子不唯一。(权值相同)

重点:1.给所有的子树进行排序,取前cnt[i] - 1棵子树

   2.排序后取到负值后结束

技术图片技术图片
//YouXam
#include 
#include 
#include 
using namespace std;
const int N = 100000;
struct edge {
    int i, next;
} edges[2 * N + 5];
int head[N + 5], tot, n, w[N + 5], limit[N + 5], dp[N + 5], ansn[N + 5],sonn[N + 5];
void add(int u, int v) {
    edges[++tot].i = v;
    edges[tot].next = head[u];
    head[u] = tot;
}
bool cmp(int a, int b) { return dp[a] > dp[b]; }
void dfs(int root, int f) {
    dp[root] = w[root];
    int sOntot= 0, sOni= 0;
    for (int i = head[root]; i; i = edges[i].next)
        if (edges[i].i != f) dfs(edges[i].i, root);
    for (int i = head[root]; i; i = edges[i].next)
        if (edges[i].i != f) sonn[++sontot] = edges[i].i;
    sort(sonn + 1, sonn + 1 + sontot, cmp);
    while (soni 1, sontot) && dp[sonn[soni + 1]] >= 0)
        dp[root] += dp[sonn[++soni]], ansn[root] |= ansn[sonn[soni]];//按位或
    if (soni  0 && dp[sonn[soni]] == dp[sonn[soni + 1]] || dp[sonn[soni]] == 0 && soni > 0 && soni <= limit[root] - 1)//两种情况,注意边界
        ansn[root] = 1;
}
int main() {
    scanf("%d", &n);
    for (int i = 1; i "%d", &w[i + 1]);
    for (int i = 1; i "%d", &limit[i + 1]);
    for (int i = 1; i ) {
        int u, v;
        scanf("%d%d", &u, &v);
        add(u, v);
        add(v, u);
    }
    limit[1] = n + 1;//在家乡没有停留限制
    dfs(1, 0);
    printf("%d\n%s", dp[1], ansn[1] ? "solution is not unique" : "solution is unique");
    return 0;
}
Code

JSOI2015 Salesman(树型DP)


推荐阅读
  • 本文介绍了lua语言中闭包的特性及其在模式匹配、日期处理、编译和模块化等方面的应用。lua中的闭包是严格遵循词法定界的第一类值,函数可以作为变量自由传递,也可以作为参数传递给其他函数。这些特性使得lua语言具有极大的灵活性,为程序开发带来了便利。 ... [详细]
  • 本文介绍了使用Java实现大数乘法的分治算法,包括输入数据的处理、普通大数乘法的结果和Karatsuba大数乘法的结果。通过改变long类型可以适应不同范围的大数乘法计算。 ... [详细]
  • 本文介绍了指针的概念以及在函数调用时使用指针作为参数的情况。指针存放的是变量的地址,通过指针可以修改指针所指的变量的值。然而,如果想要修改指针的指向,就需要使用指针的引用。文章还通过一个简单的示例代码解释了指针的引用的使用方法,并思考了在修改指针的指向后,取指针的输出结果。 ... [详细]
  • 本文内容为asp.net微信公众平台开发的目录汇总,包括数据库设计、多层架构框架搭建和入口实现、微信消息封装及反射赋值、关注事件、用户记录、回复文本消息、图文消息、服务搭建(接入)、自定义菜单等。同时提供了示例代码和相关的后台管理功能。内容涵盖了多个方面,适合综合运用。 ... [详细]
  • 知识图谱——机器大脑中的知识库
    本文介绍了知识图谱在机器大脑中的应用,以及搜索引擎在知识图谱方面的发展。以谷歌知识图谱为例,说明了知识图谱的智能化特点。通过搜索引擎用户可以获取更加智能化的答案,如搜索关键词"Marie Curie",会得到居里夫人的详细信息以及与之相关的历史人物。知识图谱的出现引起了搜索引擎行业的变革,不仅美国的微软必应,中国的百度、搜狗等搜索引擎公司也纷纷推出了自己的知识图谱。 ... [详细]
  • 本文讲述了作者通过点火测试男友的性格和承受能力,以考验婚姻问题。作者故意不安慰男友并再次点火,观察他的反应。这个行为是善意的玩人,旨在了解男友的性格和避免婚姻问题。 ... [详细]
  • 本文详细介绍了Linux中进程控制块PCBtask_struct结构体的结构和作用,包括进程状态、进程号、待处理信号、进程地址空间、调度标志、锁深度、基本时间片、调度策略以及内存管理信息等方面的内容。阅读本文可以更加深入地了解Linux进程管理的原理和机制。 ... [详细]
  • 1,关于死锁的理解死锁,我们可以简单的理解为是两个线程同时使用同一资源,两个线程又得不到相应的资源而造成永无相互等待的情况。 2,模拟死锁背景介绍:我们创建一个朋友 ... [详细]
  • 后台获取视图对应的字符串
    1.帮助类后台获取视图对应的字符串publicclassViewHelper{将View输出为字符串(注:不会执行对应的ac ... [详细]
  • 《数据结构》学习笔记3——串匹配算法性能评估
    本文主要讨论串匹配算法的性能评估,包括模式匹配、字符种类数量、算法复杂度等内容。通过借助C++中的头文件和库,可以实现对串的匹配操作。其中蛮力算法的复杂度为O(m*n),通过随机取出长度为m的子串作为模式P,在文本T中进行匹配,统计平均复杂度。对于成功和失败的匹配分别进行测试,分析其平均复杂度。详情请参考相关学习资源。 ... [详细]
  • 本文介绍了通过ABAP开发往外网发邮件的需求,并提供了配置和代码整理的资料。其中包括了配置SAP邮件服务器的步骤和ABAP写发送邮件代码的过程。通过RZ10配置参数和icm/server_port_1的设定,可以实现向Sap User和外部邮件发送邮件的功能。希望对需要的开发人员有帮助。摘要长度:184字。 ... [详细]
  • 动态规划算法的基本步骤及最长递增子序列问题详解
    本文详细介绍了动态规划算法的基本步骤,包括划分阶段、选择状态、决策和状态转移方程,并以最长递增子序列问题为例进行了详细解析。动态规划算法的有效性依赖于问题本身所具有的最优子结构性质和子问题重叠性质。通过将子问题的解保存在一个表中,在以后尽可能多地利用这些子问题的解,从而提高算法的效率。 ... [详细]
  • Java验证码——kaptcha的使用配置及样式
    本文介绍了如何使用kaptcha库来实现Java验证码的配置和样式设置,包括pom.xml的依赖配置和web.xml中servlet的配置。 ... [详细]
  • 高质量SQL书写的30条建议
    本文提供了30条关于优化SQL的建议,包括避免使用select *,使用具体字段,以及使用limit 1等。这些建议是基于实际开发经验总结出来的,旨在帮助读者优化SQL查询。 ... [详细]
  • 在project.properties添加#Projecttarget.targetandroid-19android.library.reference.1..Sliding ... [详细]
author-avatar
手机用户2602903375
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有