热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

构建深度学习框架运行平台

构建深度学习框架运行平台将为TensorFlow、PyTorch和TorchScript之外的元素构建一个简单的深度学习框架运行平台模型。将展示如何从Python和C++运行推理。

构建深度学习框架运行平台            

将为TensorFlow、PyTorch和TorchScript之外的元素构建一个简单的深度学习框架运行平台模型。将展示如何从Python和C++运行推理。             

打包和推断接口还具有全面的文档字符串,并提供了API的更详细用法。    

打包一个模型             

包装模型的第一步是定义一个“问题”(例如,2d对象检测)。 “问题”由四个部分组成:             

输入规格             

指定输入张量的名称、数据类型和形状的dict列表             

输出规格             

指定输出张量的名称、数据类型和形状的dict列表             

测试输入数据(可选)             

如果提供了,将在打包后立即运行推断,以验证模型打包是否正确。如果提供了测试输出数据,则必须提供             

测试输出数据(可选)             

如果提供,将用测试输入数据测试推理输出是否与测试输出数据匹配。

张量的形状可以不包含任何值,在这种情况下,任何值都是可接受的。也可以在这些形状定义中使用“符号”。该符号的每个实例必须在运行时解析为相同的值。例如,加法模型的问题定义:

INPUT_SPEC = [

    # A one dimensional tensor of any size with dtype float32

    {"name": "x", "dtype": "float32", "shape": ("num_inputs",)},

    # A one dimensional tensor of the same size with dtype float32

    {"name": "y", "dtype": "float32", "shape": ("num_inputs",)},

]

 

OUTPUT_SPEC = [

    # The sum of the two tensors

    {"name": "out", "dtype": "float32", "shape": (None,)},

]

 

TEST_INPUT_DATA = {

    "x": np.arange(5, dtype=np.float32),

    "y": np.arange(5, dtype=np.float32),

}

 

TEST_EXPECTED_OUT = {

    "out": np.arange(5) + np.arange(5)

}

x和y形状的符号num_inputs在运行时必须解析为相同的值。             

现在已经定义了一个问题,将看到如何在每个当前支持的DL框架中打包一个模型。             

TensorFlow有两种方法可以打包TensorFlow模型。一个是带GraphDef的,另一个是带到冻结图的路径的。这两种方法都需要一个node_name_mapping,该映射将问题定义(见上文)中的张量名称映射到张量流图中的节点。             

图表             

如果有一个返回GraphDef的函数:

import tensorflow as tf

def create_tf_addition_model():

    """

    A simple addition model

    """

    g = tf.Graph()

    with g.as_default():

        with tf.name_scope("some_namespace"):

            x = tf.placeholder(tf.float32, name="in_x")

            y = tf.placeholder(tf.float32, name="in_y")

 

            out = tf.add(x, y, name="out")

 

return g.as_graph_def()      、

可以将模型打包如下:

from neuropod.packagers import create_tensorflow_neuropod

create_tensorflow_neuropod(

    neuropod_path=neuropod_path,

    model_name="addition_model",

    graph_def=create_tf_addition_model(),

    node_name_mapping={

        "x": "some_namespace/in_x:0",

        "y": "some_namespace/in_y:0",

        "out": "some_namespace/out:0",

    },

    input_spec=addition_problem_definition.INPUT_SPEC,

    output_spec=addition_problem_definition.OUTPUT_SPEC,

    test_input_data=addition_problem_definition.TEST_INPUT_DATA,

    test_expected_out=addition_problem_definition.TEST_EXPECTED_OUT,

)

提示

create_tensorflow_neuropod在创建之后立即使用测试数据运行推断。如果模型输出与预期输出不匹配,则引发ValueError。

冻结图表的路径             

已经有一个冻结的图形,则可以将模型打包如下:

from neuropod.packagers import create_tensorflow_neuropod

create_tensorflow_neuropod(

    neuropod_path=neuropod_path,

    model_name="addition_model",

    frozen_graph_path="/path/to/my/frozen.graph",

    node_name_mapping={

        "x": "some_namespace/in_x:0",

        "y": "some_namespace/in_y:0",

        "out": "some_namespace/out:0",

    },

    input_spec=addition_problem_definition.INPUT_SPEC,

    output_spec=addition_problem_definition.OUTPUT_SPEC,

    test_input_data=addition_problem_definition.TEST_INPUT_DATA,

    test_expected_out=addition_problem_definition.TEST_EXPECTED_OUT,

)

提示

create_tensorflow_neuropod在创建之后立即使用测试数据运行推断。如果模型输出与预期输出不匹配,则引发ValueError。

PyTorch

提示

打包PyTorch模型有点复杂,因为运行网络需要python代码和权重。              

如果可能,建议将模型转换为TorchScript。

为了创建Pythorch Europod包,需要遵循以下几条准则:             

只要运行时环境安装了包,绝对导入(例如导入torch)就可以。

对于Python 3,包中的所有其他导入都必须是相对的              与TensorFlow/TorchScript/Keras包相比,这种类型的包的灵活性稍低,因为绝对导入引入了对运行时环境的依赖。这将在将来的版本中得到改进。             

假设的加法模型是这样的(存储在/my/model/code/dir/main.py):

import torch

import torch.nn as nn

class AdditionModel(nn.Module):

  def forward(self, x, y):

      return {

          "out": x + y

      }

def get_model(data_root):

  return AdditionModel()

为了打包,需要4样东西:             

要存储的任何数据的路径(例如,模型权重)             

代码的python_root的路径以及要打包的python_root中任何dir的相对路径             

返回给定打包数据路径的模型的入口点函数。

模型的依赖关系。这些应该是python包。

提示

有关每个参数的详细说明,请参阅create_pytorch_eminod的API文档

对于模型:             

不需要存储任何数据(因为我们的模型没有权重)             

python根目录是/my/model/code/dir,希望将所有代码存储在其中             

entrypoint函数是get_模型,entrypoint_包是main(因为代码在主.py在python根目录中)              这意味着:

from neuropod.packagers import create_pytorch_neuropod

create_pytorch_neuropod(

    neuropod_path=neuropod_path,

    model_name="addition_model",

    data_paths=[],

    code_path_spec=[{

        "python_root": ‘/my/model/code/dir‘,

        "dirs_to_package": [

            ""  # Package everything in the python_root

        ],

    }],

    entrypoint_package="main",

    entrypoint="get_model",

    input_spec=addition_problem_definition.INPUT_SPEC,

    output_spec=addition_problem_definition.OUTPUT_SPEC,

    test_input_data=addition_problem_definition.TEST_INPUT_DATA,

    test_expected_out=addition_problem_definition.TEST_EXPECTED_OUT,

)

提示

create_pytorch_neuropod创建后立即使用测试数据运行推断。如果模型输出与预期输出不匹配,则引发ValueError。

TorchScript

TorchScript比PyTorch更容易打包(因为不需要存储任何python代码)。             

如果有一个附加模型,它看起来像:

import torch

class AdditionModel(torch.jit.ScriptModule):

    """

    A simple addition model

    """

    @torch.jit.script_method

    def forward(self, x, y):

        return {

            "out": x + y

        }

可以通过运行以下命令对其进行打包:

from neuropod.packagers import create_torchscript_neuropod

create_torchscript_neuropod(

    neuropod_path=neuropod_path,

    model_name="addition_model",

    module=AdditionModel(),

    input_spec=addition_problem_definition.INPUT_SPEC,

    output_spec=addition_problem_definition.OUTPUT_SPEC,

    test_input_data=addition_problem_definition.TEST_INPUT_DATA,

test_expected_out=addition_problem_definition.TEST_EXPECTED_OUT,

提示

create_torchscript_neuropod在创建后立即使用测试数据运行推断。如果模型输出与预期输出不匹配,则引发ValueError。

Keras

如果有一个Keras附加模型,它看起来像:

def create_keras_addition_model():

    """

    A simple addition model

    """

    x = Input(batch_shape=(None,), name="x")

    y = Input(batch_shape=(None,), name="y")

    out = Add(name="out")([x, y])

    model = Model(inputs=[x, y], outputs=[out])

    return model

可以通过运行:

from neuropod.packagers import create_keras_neuropod

create_keras_neuropod(

    neuropod_path=neuropod_path,

    model_name="addition_model",

    sess=tf.keras.backend.get_session(),

    model=create_keras_addition_model(),

    input_spec=addition_problem_definition.INPUT_SPEC,

    output_spec=addition_problem_definition.OUTPUT_SPEC,

    test_input_data=addition_problem_definition.TEST_INPUT_DATA,

    test_expected_out=addition_problem_definition.TEST_EXPECTED_OUT,

)

提示

create_keras_neurood在创建之后立即使用测试数据运行推断。如果模型输出与预期输出不匹配,则引发ValueError。

Python

打包aribtrary Python代码具有与上面打包PyTorch相同的接口。             

例如,请参见上面的PyTorch部分,并使用create_python_neurood而不是create_PyTorch_neurood             

运行推理             

不管底层的DL框架是什么,推理都是完全相同的             

来自Python

x = np.array([1, 2, 3, 4])

y = np.array([5, 6, 7, 8])

with load_neuropod(ADDITION_MODEL_PATH) as neuropod:

  results = neuropod.infer({"x": x, "y": y})

  # array([6, 8, 10, 12])

  print results["out"]

From C++

#include "neuropod/neuropod.hh"

int main()

{

    const std::vector<int64_t> shape = {4};

 

    // To show two different ways of adding data, one of our inputs is an array

    // and the other is a vector.

    const float[]            x_data = {1, 2, 3, 4};

    const std::vector<float> y_data = {5, 6, 7, 8};

    // Load the neuropod

    Neuropod neuropod(ADDITION_MODEL_PATH);

 

    // Add the input data using two different signatures of `copy_from`

    // (one with a pointer and size, one with a vector)

    auto x_tensor = neuropod.allocate_tensor<float>(shape);

    x_tensor->copy_from(x_data, 4);

 

    auto y_tensor = neuropod.allocate_tensor<float>(shape);

    y_tensor->copy_from(y_data);

 

    // Run inference

    const auto output_data = neuropod.infer({

        {"x", x_tensor},

        {"y", y_tensor}

    });

 

    const auto out_tensor = output_data->at("out");

 

    // {6, 8, 10, 12}

    const auto out_vector = out_tensor->as_typed_tensor<float>()->get_data_as_vector();

    // {4}

    const auto out_shape  = out_tensor->get_dims();

}

提示

这显示了C++ API的基本用法。为了更灵活和高效地使用内存,请参阅C++ API文档。

附录             

问题定义示例             

二维目标检测的问题定义可能如下所示:

INPUT_SPEC = [

    # BGR image

    {"name": "image", "dtype": "uint8", "shape": (1200, 1920, 3)},

]

OUTPUT_SPEC = [

    # shape: (num_detections, 4): (xmin, ymin, xmax, ymax)

    # These values are in units of pixels. The origin is the top left corner

    # with positive X to the right and positive Y towards the bottom of the image

    {"name": "boxes", "dtype": "float32", "shape": ("num_detections", 4)},

    # The list of classes that the network can output

    # This must be some subset of [‘vehicle‘, ‘person‘, ‘motorcycle‘, ‘bicycle‘]

    {"name": "supported_object_classes", "dtype": "string", "shape": ("num_classes",)},

    # The probability of each class for each detection

    # These should all be floats between 0 and 1

    {"name": "object_class_probability", "dtype": "float32", "shape": ("num_detections", "num_classes")},

]

构建深度学习框架运行平台



推荐阅读
  • 本文介绍了lua语言中闭包的特性及其在模式匹配、日期处理、编译和模块化等方面的应用。lua中的闭包是严格遵循词法定界的第一类值,函数可以作为变量自由传递,也可以作为参数传递给其他函数。这些特性使得lua语言具有极大的灵活性,为程序开发带来了便利。 ... [详细]
  • 本文介绍了使用Java实现大数乘法的分治算法,包括输入数据的处理、普通大数乘法的结果和Karatsuba大数乘法的结果。通过改变long类型可以适应不同范围的大数乘法计算。 ... [详细]
  • HDU 2372 El Dorado(DP)的最长上升子序列长度求解方法
    本文介绍了解决HDU 2372 El Dorado问题的一种动态规划方法,通过循环k的方式求解最长上升子序列的长度。具体实现过程包括初始化dp数组、读取数列、计算最长上升子序列长度等步骤。 ... [详细]
  • 本文介绍了C#中数据集DataSet对象的使用及相关方法详解,包括DataSet对象的概述、与数据关系对象的互联、Rows集合和Columns集合的组成,以及DataSet对象常用的方法之一——Merge方法的使用。通过本文的阅读,读者可以了解到DataSet对象在C#中的重要性和使用方法。 ... [详细]
  • 本文介绍了OC学习笔记中的@property和@synthesize,包括属性的定义和合成的使用方法。通过示例代码详细讲解了@property和@synthesize的作用和用法。 ... [详细]
  • 本文介绍了在SpringBoot中集成thymeleaf前端模版的配置步骤,包括在application.properties配置文件中添加thymeleaf的配置信息,引入thymeleaf的jar包,以及创建PageController并添加index方法。 ... [详细]
  • 知识图谱——机器大脑中的知识库
    本文介绍了知识图谱在机器大脑中的应用,以及搜索引擎在知识图谱方面的发展。以谷歌知识图谱为例,说明了知识图谱的智能化特点。通过搜索引擎用户可以获取更加智能化的答案,如搜索关键词"Marie Curie",会得到居里夫人的详细信息以及与之相关的历史人物。知识图谱的出现引起了搜索引擎行业的变革,不仅美国的微软必应,中国的百度、搜狗等搜索引擎公司也纷纷推出了自己的知识图谱。 ... [详细]
  • 本文详细介绍了Linux中进程控制块PCBtask_struct结构体的结构和作用,包括进程状态、进程号、待处理信号、进程地址空间、调度标志、锁深度、基本时间片、调度策略以及内存管理信息等方面的内容。阅读本文可以更加深入地了解Linux进程管理的原理和机制。 ... [详细]
  • 后台获取视图对应的字符串
    1.帮助类后台获取视图对应的字符串publicclassViewHelper{将View输出为字符串(注:不会执行对应的ac ... [详细]
  • 《数据结构》学习笔记3——串匹配算法性能评估
    本文主要讨论串匹配算法的性能评估,包括模式匹配、字符种类数量、算法复杂度等内容。通过借助C++中的头文件和库,可以实现对串的匹配操作。其中蛮力算法的复杂度为O(m*n),通过随机取出长度为m的子串作为模式P,在文本T中进行匹配,统计平均复杂度。对于成功和失败的匹配分别进行测试,分析其平均复杂度。详情请参考相关学习资源。 ... [详细]
  • 高质量SQL书写的30条建议
    本文提供了30条关于优化SQL的建议,包括避免使用select *,使用具体字段,以及使用limit 1等。这些建议是基于实际开发经验总结出来的,旨在帮助读者优化SQL查询。 ... [详细]
  • 本文介绍了指针的概念以及在函数调用时使用指针作为参数的情况。指针存放的是变量的地址,通过指针可以修改指针所指的变量的值。然而,如果想要修改指针的指向,就需要使用指针的引用。文章还通过一个简单的示例代码解释了指针的引用的使用方法,并思考了在修改指针的指向后,取指针的输出结果。 ... [详细]
  • 本文讨论了Alink回归预测的不完善问题,指出目前主要针对Python做案例,对其他语言支持不足。同时介绍了pom.xml文件的基本结构和使用方法,以及Maven的相关知识。最后,对Alink回归预测的未来发展提出了期待。 ... [详细]
  • 1,关于死锁的理解死锁,我们可以简单的理解为是两个线程同时使用同一资源,两个线程又得不到相应的资源而造成永无相互等待的情况。 2,模拟死锁背景介绍:我们创建一个朋友 ... [详细]
  • 在project.properties添加#Projecttarget.targetandroid-19android.library.reference.1..Sliding ... [详细]
author-avatar
mobiledu2502894073
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有