热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

GeneralizedFocalLoss:LearningQualifiedandDistributedBoundingBoxesforDenseObjectDetection

GeneralizedFocalLoss:LearningQualifiedandDistributedBoundingBoxesforDenseObjectDetection一.

目录
  • Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for


Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for

Dense Object Detection


一. 论文简介

将目标检测Loss和评价指标统一,提升检测精度。这是一篇挺好的论文,下面会将其拓展到其它领域。

主要做的贡献如下(可能之前有人已提出):



  1. 分类Loss+评价指标

  2. Regression分布推广到一般性



二. 模块详解

2.1 谈谈分布



  1. 什么是分布?表示一个数发生的概率,设 \(f=P(x)\) 表示分布函数,\(f\) 表示发生的概率,\(x\) 可能存在的数。1)显而易见,\(\int_{-\infty}^{+\infty}P(x)dx=1\),所有的数存在概率总和为1。 2)\(y=\int_{-\infty}^{+\infty}P(x)*xdx\) ,它的整体期望(平均值)肯定是等于目标值的。

  2. 什么是 \(Dirac\) 分布? reference ,\(f=\delta(x-\mu)\) , 当 \(x=\mu\) 概率为1,其它都是0。这是什么意思?此分布简称为绝对分布,只要是直接求目标的,都属于此分布。比如:1)直接计算 \(one-hot\) 交叉熵 \(label=[0,0,0,1],pred=[0.2,0.1,0.1,0.6]\),我们的目的就是两者相等,其它的值都是不存在的。你问我按照\(Delta\) 分布应该其他值为0才对啊,那loss=0(实际loss为什么不是0)怎么回传呢?记住Loss和分布不是一个概念,Loss是我们用一种方式使得结果达到理想分布,分布是一种理想的状态,简单点说 \(Loss \to Sample\)。2)那么直接进行BBox回归也是一种 \(Delta\) 分布,因为都是预测一个值,然后直接和Label进行smoothL1计算Loss。

  3. 什么是 \(Gaussian\) 分布,这个不多说大家都知道。\(Gaussian-YOLO\)\(Heatmap\) 都是属于此分布。举个例子:刚开始做关键点(当前小模型人脸也是这样做的)直接使用坐标 \((x,y)\) 进行回归,显然这是属于 \(Delta\) 分布的,后面人们将其改进为 \(Heatmap\),这就是将分布改为 \(Gaussian\),所以称为\(Gaussian-Heatmap\) .

  4. 什么是任意分布?只满足分布的两个条件,没有具体的公式。直接使用期望和Label进行计算Loss即可。

  5. 进一步理解Loss和分布的关系,期望和Label计算Loss(前向推导使用期望做结果),中间概率和期望计算Loss(使得输出按照一定分布进行,容易收敛提高精度)。


技术分享图片


2.2 分类Loss



  • 具体由来见:论文作者知乎回答


笔者给出简短说明:



  • 先去看一下FCOS论文,其中使用 \(center-ness\) 计算预测框质量,两个作用:1)训练时抑制质量较差的框。2)前向计算时用于NMS操作指标。

  • 问题来了。。。训练阶段、前向计算、评价指标没有统一?

  • 论文魔改一下Focal-Loss、center-ness统一为一个Loss



技术分享图片

  • 此部分比较简单,基本和FCOS类似




# 代码出自mmdetection
@weighted_loss
def quality_focal_loss(pred, target, beta=2.0):
"""Quality Focal Loss (QFL) is from
Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes
for Dense Object Detection
https://arxiv.org/abs/2006.04388
Args:
pred (torch.Tensor): Predicted joint representation of classification
and quality (IoU) estimation with shape (N, C), C is the number of
classes.
target (tuple([torch.Tensor])): Target category label with shape (N,)
and target quality label with shape (N,).
beta (float): The beta parameter for calculating the modulating factor.
Defaults to 2.0.
Return:
torch.Tensor: Loss tensor with shape (N,).
"""
assert len(target) == 2, """target for QFL must be a tuple of two elements,
including category label and quality label, respectively"""
# label denotes the category id, score denotes the quality score
label, score = target
# negatives are supervised by 0 quality score
pred_sigmoid = pred.sigmoid()
scale_factor = pred_sigmoid
zerolabel = scale_factor.new_zeros(pred.shape)
loss = F.binary_cross_entropy_with_logits(
pred, zerolabel, reduction=‘none‘) * scale_factor.pow(beta)
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes
bg_class_ind = pred.size(1)
pos = ((label >= 0) & (label pos_label = label[pos].long()
# positives are supervised by bbox quality (IoU) score
scale_factor = score[pos] - pred_sigmoid[pos, pos_label]
loss[pos, pos_label] = F.binary_cross_entropy_with_logits(
pred[pos, pos_label], score[pos],
reduction=‘none‘) * scale_factor.abs().pow(beta)
loss = loss.sum(dim=1, keepdim=False)
return loss

2.3 回归Loss

主要包括两个部分:



  • \(Delta\) 分布推广到任意分布



    • 论文公式(3)是 \(Delta\) 分布的期望,公式(4)和(5)是任意分布的期望

    • 直接预测多个(论文设置为16)值,求期望得到最佳值

    • TIPS: 效果肯定比 \(Delta\) 分布好,但是计算量会增加。小模型一般不适用,大模型使用较多。



  • 限制任意分布



    • 任意分布会过于离散,实际真实的值距离label都不会太远

    • 限制分布范围,论文公式(6)

    • TIPS: 按照公式推导应该效果好(正在推广到关键点检测),使用任意分布的都可以加上试试。



# 代码出自mmdetection
@weighted_loss
def distribution_focal_loss(pred, label):
"""Distribution Focal Loss (DFL) is from
Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes
for Dense Object Detection
https://arxiv.org/abs/2006.04388
Args:
pred (torch.Tensor): Predicted general distribution of bounding boxes
(before softmax) with shape (N, n+1), n is the max value of the
integral set `{0, ..., n}` in paper.
label (torch.Tensor): Target distance label for bounding boxes with
shape (N,).
Return:
torch.Tensor: Loss tensor with shape (N,).
"""
# 完全按照论文公式(6)所示,label是真实值(目标框和anchor之间的偏差,参考FCOS)
# pred的shape(偏差*分布),如果没有后面的分布,那就变成delta分布
dis_left = label.long() # label范围[0,正无穷],感觉这里应该-1然后限制一下范围最好。作者说long()向下取整,但是这解决不了对称问题。
dis_right = dis_left + 1
weight_left = dis_right.float() - label
weight_right = label - dis_left.float()
loss = F.cross_entropy(pred, dis_left, reduction=‘none‘) * weight_left + F.cross_entropy(pred, dis_right, reduction=‘none‘) * weight_right
return loss

三. 参考文献

  • 原始论文

  • 分布参考一

  • 分布参考二

  • 论文原理理解参考

  • 论文代码理解参考


推荐阅读
  • 本文介绍了lua语言中闭包的特性及其在模式匹配、日期处理、编译和模块化等方面的应用。lua中的闭包是严格遵循词法定界的第一类值,函数可以作为变量自由传递,也可以作为参数传递给其他函数。这些特性使得lua语言具有极大的灵活性,为程序开发带来了便利。 ... [详细]
  • HDU 2372 El Dorado(DP)的最长上升子序列长度求解方法
    本文介绍了解决HDU 2372 El Dorado问题的一种动态规划方法,通过循环k的方式求解最长上升子序列的长度。具体实现过程包括初始化dp数组、读取数列、计算最长上升子序列长度等步骤。 ... [详细]
  • 本文介绍了C#中数据集DataSet对象的使用及相关方法详解,包括DataSet对象的概述、与数据关系对象的互联、Rows集合和Columns集合的组成,以及DataSet对象常用的方法之一——Merge方法的使用。通过本文的阅读,读者可以了解到DataSet对象在C#中的重要性和使用方法。 ... [详细]
  • 本文介绍了OC学习笔记中的@property和@synthesize,包括属性的定义和合成的使用方法。通过示例代码详细讲解了@property和@synthesize的作用和用法。 ... [详细]
  • 本文详细介绍了Linux中进程控制块PCBtask_struct结构体的结构和作用,包括进程状态、进程号、待处理信号、进程地址空间、调度标志、锁深度、基本时间片、调度策略以及内存管理信息等方面的内容。阅读本文可以更加深入地了解Linux进程管理的原理和机制。 ... [详细]
  • 《数据结构》学习笔记3——串匹配算法性能评估
    本文主要讨论串匹配算法的性能评估,包括模式匹配、字符种类数量、算法复杂度等内容。通过借助C++中的头文件和库,可以实现对串的匹配操作。其中蛮力算法的复杂度为O(m*n),通过随机取出长度为m的子串作为模式P,在文本T中进行匹配,统计平均复杂度。对于成功和失败的匹配分别进行测试,分析其平均复杂度。详情请参考相关学习资源。 ... [详细]
  • 高质量SQL书写的30条建议
    本文提供了30条关于优化SQL的建议,包括避免使用select *,使用具体字段,以及使用limit 1等。这些建议是基于实际开发经验总结出来的,旨在帮助读者优化SQL查询。 ... [详细]
  • 本文介绍了在开发Android新闻App时,搭建本地服务器的步骤。通过使用XAMPP软件,可以一键式搭建起开发环境,包括Apache、MySQL、PHP、PERL。在本地服务器上新建数据库和表,并设置相应的属性。最后,给出了创建new表的SQL语句。这个教程适合初学者参考。 ... [详细]
  • 本文介绍了使用Java实现大数乘法的分治算法,包括输入数据的处理、普通大数乘法的结果和Karatsuba大数乘法的结果。通过改变long类型可以适应不同范围的大数乘法计算。 ... [详细]
  • 本文讨论了如何优化解决hdu 1003 java题目的动态规划方法,通过分析加法规则和最大和的性质,提出了一种优化的思路。具体方法是,当从1加到n为负时,即sum(1,n)sum(n,s),可以继续加法计算。同时,还考虑了两种特殊情况:都是负数的情况和有0的情况。最后,通过使用Scanner类来获取输入数据。 ... [详细]
  • 本文介绍了在SpringBoot中集成thymeleaf前端模版的配置步骤,包括在application.properties配置文件中添加thymeleaf的配置信息,引入thymeleaf的jar包,以及创建PageController并添加index方法。 ... [详细]
  • 知识图谱——机器大脑中的知识库
    本文介绍了知识图谱在机器大脑中的应用,以及搜索引擎在知识图谱方面的发展。以谷歌知识图谱为例,说明了知识图谱的智能化特点。通过搜索引擎用户可以获取更加智能化的答案,如搜索关键词"Marie Curie",会得到居里夫人的详细信息以及与之相关的历史人物。知识图谱的出现引起了搜索引擎行业的变革,不仅美国的微软必应,中国的百度、搜狗等搜索引擎公司也纷纷推出了自己的知识图谱。 ... [详细]
  • 1,关于死锁的理解死锁,我们可以简单的理解为是两个线程同时使用同一资源,两个线程又得不到相应的资源而造成永无相互等待的情况。 2,模拟死锁背景介绍:我们创建一个朋友 ... [详细]
  • 后台获取视图对应的字符串
    1.帮助类后台获取视图对应的字符串publicclassViewHelper{将View输出为字符串(注:不会执行对应的ac ... [详细]
  • 动态规划算法的基本步骤及最长递增子序列问题详解
    本文详细介绍了动态规划算法的基本步骤,包括划分阶段、选择状态、决策和状态转移方程,并以最长递增子序列问题为例进行了详细解析。动态规划算法的有效性依赖于问题本身所具有的最优子结构性质和子问题重叠性质。通过将子问题的解保存在一个表中,在以后尽可能多地利用这些子问题的解,从而提高算法的效率。 ... [详细]
author-avatar
小玲的夏天_905_735_602
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有