热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

多目标优化蚁群算法的matlab_深入浅出多目标优化10分钟多目标优化入门

多目标优化快速入门多目标优化--引子正如生活中,你想买一辆车,又想汽车的性能好,外观不错,价格还比较低,对于这

多目标优化快速入门

多目标优化--引子

正如生活中,你想买一辆车,又想汽车的性能好,外观不错,价格还比较低,对于这同时满足这三个条件,我们应该如何进行考虑呢?

在投资的时候,我们想投入的资金最少,所付出的风险最小,同时收益是最大的,如何同时进行实现呢?

在数学学习中,求求函数 f1(x1,x2,…,xn)=x1^2+x2^2 +…+xn^2 及函数 f2(x1,x2,…,xn)=(x1-1)^2+(x2-1)^2 +…+(xn-1)^2 同时达到最小的 (x1,x2,…,xn) 的取值,不存在一组 (x1,x2,…,xn) 的取值,使 f1 和 f2 同时达到最小值,这时候怎么办呢?

帕累托最优

帕雷托最优是指资源分配的一种理想状态。帕雷托最优的状态就是不可能再有更多的帕雷托改善的状态;换句话说,不可能再改善某些人的境况,而不使任何其他人受损。

进化计算

最早的是达尔文的进化论-物竞天择,适者生存

后来是约翰.霍兰德提出的遗传算法

1.遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,通过模拟自然进化过程搜索最优解。

2.该算法通过数学的方式,利用计算机仿真运算,将问题的求解过程转换成类似生物进化中的染色体基因的交叉、变异等过程。在求解较为复杂的组合优化问题时,相对一些常规的优化算法,通常能够较快地获得较好的优化结果。

3.遗传算法已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。

具体步骤是:

(1)种群中个体随机初始化.

(2)每个个体通过评价得到一个适应度值.

(3)适应度值大的个体有更大的概率保留下来.

(4)通过对适应度值大的个体交叉变异产生新的个体.

不断的迭代第 (2)-(4) 步骤,经过足够多的迭代次后,最终能得到好的解.

63edd5bd254e45c819a673b57a9fdb00.png

基本概念

MOP

1.求解单个函数 f1 的最小值为单目标优化问题(SOP)

2.同时求解多个函数 f1 和 f2 的最小值为多目标优化问题(MOP)

3.多目标优化问题的一般数学描述:

93ab80f5394bef862735d917de3c3704.png

4.对于两个个体 X1 和 X2 以及目标函数 F(X),若 X1 的每一个目标函数值 fi(X1) 都比 X2 对应的目标函数值 fi(X2) 要小,则认为 X1 要比 X2 更好,称 X1 支配(dominate) X2 ,记作 X1 ≺ X2 (它具有传递性)

5.若存在 i 和 j 使得 fi(X1) X2) 且 fj(X1) > fj(X2), 则认为 X1 和 X2 无法比较,视为一样好,称 X1 与 X2 是非支配 (non-dominated)的,记作 X1 ⊀ X2 且 X2 ⊀ X1

6.对于一组个体,若 Xa 不被其它任何一个个体支配,则 Xa 也称为是非支配的;Xa 也叫做 Pareto 最优解

7.对于一个多目标优化问题,目的是求出一组 Pareto 最优解 Xi ,i=1,2,…,并使得目标函数的值尽可能地小

9583a9d05e5e1eb8b23aa90975fd1669.png

根据左图中目标变量可知 ,帕累托最优解往往在左下角,值相对偏小。

在右图中,可以看出,B支配C,D两点,在A点,B是被支配的,其余空间则是非支配

EC

1.想要求得多目标问题的最优解,我们利用计算机强大的计算能力,在决策空间中随机产生大量个体,并找出其中最好的(不被支配的)个体。也就是不断地“试”,来找到越来越好的个体。随机寻找个体的过程称为 搜索

2.但无法做到遍历决策空间中每一个个体,我们需要在更短的时间里利用随机的方法找到更好的个体

3.利用进化算法的策略,可以朝着越来越好的方向随机产生个体,而不是在决策空间中完全盲目地产生个体

4.作为一个随机性算法,进化算法有如下 特点:

•得到的不是问题的精确结果,而是近似的结果

•每次得到的结果不一样

•结果的精度随着迭代次数的增加而不断上升

•往往以算法得到的结果的精度来评价算法的性能

                    进化算法的一般策略

3caa3a5cbe02c6a06034eee7f29b8f72.png

Indicator

7c6b171b2d6d3061c5997dbeb6b53e41.png

1.不同的算法,产生的结果是不同的,从结果可以看出各个算法性能的好坏

2.算法产生的解集的好坏标准:

•接近真实前沿面(收敛性)

•在空间上分布性好(分布性)

3.还有许多量化的评价解集的好坏的标准

发展历程

古典多目标时期

传统的多目标优化方法是将各个子目标聚合成一个带正系数的单目标函数,系数由决策者决定,或者由优化方法自适应调整。

为了获取近似Pareto最优集,一些优化方法使用不同的系数来实施动态优化。

常见的古典方法有加权法(利用斜率来判断最优解)、约束法、目标规划法以及极大极小法等

进化多目标时期

最早提到可以利用EA来解决多目标优化问题的是Richard S. Rosenburg 于1967年在他的博士论文 “Simulation of genetic populations with biochemical properties”中

David Goldberg 于1989年首次提出了Pareto Ranking的概念:MOEA中个体必须经由Pareto支配关系来选出,同时他也指出了MOEA中分布性保持的重要性,主要采取Fitness Share的策略

Carlos M. Fonseca 和 Peter J. Fleming 于1993年提出了Multiobjective Optimization Genetic Algorithm (MOGA)。MOGA采用基于排序数的适应度赋值机制以及自适应的适应度共享的策略,风靡一时

Kalyanmoy Deb于1994年提出了Non-dominated Sorting Genetic Algorithm (NSGA),采用分层的非支配排序机制以及适应度共享机制。然而算法缺陷是计算复杂度为O(MN3),随后,Deb跟他的学生在2000年提出了NSGA的改进版本NSGA2,文章于2002年发表TEVC。NSGA2采用快速非支配排序以及拥挤距离的策略,时间复杂度在O(MN2)。由于其速度及效果上的优势,许多年来NSGA2都被作为对比算法。

Eckart Zitzler 在1998年一个会议上提出Strength Pareto Evolutionary Algorithm (SPEA),第二年文章被TEVC收录。SPEA在算法中使用了一个外部Archive来保留搜索到的好解,称之为Elitism。Elitism的使用随后也开始流行,随后不久Zitzler等人又对SPEA进行了改进SPEA2,主要引入了较细的适应度赋值方式以及密度估计方式(Truncation Method)。

2006年,张青富跟李辉首次提出了基于分解的多目标优化算法,MOEAD,是将MOP问题分解成SOP问题并同时对这些子问题进行优化。MOEAD不仅在速度上有优势,而且搜到的结果很规律。在MOEA领域开辟了一条新的通道。

2014年,Deb的NSGA3分成上下两个部分发表在TEVC上。主要是用来处理高维多目标问题。采用了基于参考点以及分解的策略。是NSGA2 + MOEAD 的结合

其中目前最经典的算法还是NSGA-II 和MOEAD,

请持续关注,后期会总结出这些算法的文章。



推荐阅读
  • 一、Hadoop来历Hadoop的思想来源于Google在做搜索引擎的时候出现一个很大的问题就是这么多网页我如何才能以最快的速度来搜索到,由于这个问题Google发明 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • [译]技术公司十年经验的职场生涯回顾
    本文是一位在技术公司工作十年的职场人士对自己职业生涯的总结回顾。她的职业规划与众不同,令人深思又有趣。其中涉及到的内容有机器学习、创新创业以及引用了女性主义者在TED演讲中的部分讲义。文章表达了对职业生涯的愿望和希望,认为人类有能力不断改善自己。 ... [详细]
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
  • STL迭代器的种类及其功能介绍
    本文介绍了标准模板库(STL)定义的五种迭代器的种类和功能。通过图表展示了这几种迭代器之间的关系,并详细描述了各个迭代器的功能和使用方法。其中,输入迭代器用于从容器中读取元素,输出迭代器用于向容器中写入元素,正向迭代器是输入迭代器和输出迭代器的组合。本文的目的是帮助读者更好地理解STL迭代器的使用方法和特点。 ... [详细]
  • 本文介绍了一种求解最小权匹配问题的方法,使用了拆点和KM算法。通过将机器拆成多个点,表示加工的顺序,然后使用KM算法求解最小权匹配,得到最优解。文章给出了具体的代码实现,并提供了一篇题解作为参考。 ... [详细]
  • GetWindowLong函数
    今天在看一个代码里头写了GetWindowLong(hwnd,0),我当时就有点费解,靠,上网搜索函数原型说明,死活找不到第 ... [详细]
  • EPICS Archiver Appliance存储waveform记录的尝试及资源需求分析
    本文介绍了EPICS Archiver Appliance存储waveform记录的尝试过程,并分析了其所需的资源容量。通过解决错误提示和调整内存大小,成功存储了波形数据。然后,讨论了储存环逐束团信号的意义,以及通过记录多圈的束团信号进行参数分析的可能性。波形数据的存储需求巨大,每天需要近250G,一年需要90T。然而,储存环逐束团信号具有重要意义,可以揭示出每个束团的纵向振荡频率和模式。 ... [详细]
  • Echarts图表重复加载、axis重复多次请求问题解决记录
    文章目录1.需求描述2.问题描述正常状态:问题状态:3.解决方法1.需求描述使用Echats实现了一个中国地图:通过选择查询周期&#x ... [详细]
  • 本文介绍了设计师伊振华受邀参与沈阳市智慧城市运行管理中心项目的整体设计,并以数字赋能和创新驱动高质量发展的理念,建设了集成、智慧、高效的一体化城市综合管理平台,促进了城市的数字化转型。该中心被称为当代城市的智能心脏,为沈阳市的智慧城市建设做出了重要贡献。 ... [详细]
  • 知识图谱——机器大脑中的知识库
    本文介绍了知识图谱在机器大脑中的应用,以及搜索引擎在知识图谱方面的发展。以谷歌知识图谱为例,说明了知识图谱的智能化特点。通过搜索引擎用户可以获取更加智能化的答案,如搜索关键词"Marie Curie",会得到居里夫人的详细信息以及与之相关的历史人物。知识图谱的出现引起了搜索引擎行业的变革,不仅美国的微软必应,中国的百度、搜狗等搜索引擎公司也纷纷推出了自己的知识图谱。 ... [详细]
  • 推荐系统遇上深度学习(十七)详解推荐系统中的常用评测指标
    原创:石晓文小小挖掘机2018-06-18笔者是一个痴迷于挖掘数据中的价值的学习人,希望在平日的工作学习中,挖掘数据的价值, ... [详细]
  • Python正则表达式学习记录及常用方法
    本文记录了学习Python正则表达式的过程,介绍了re模块的常用方法re.search,并解释了rawstring的作用。正则表达式是一种方便检查字符串匹配模式的工具,通过本文的学习可以掌握Python中使用正则表达式的基本方法。 ... [详细]
  • 建立分类感知器二元模型对样本数据进行分类
    本文介绍了建立分类感知器二元模型对样本数据进行分类的方法。通过建立线性模型,使用最小二乘、Logistic回归等方法进行建模,考虑到可能性的大小等因素。通过极大似然估计求得分类器的参数,使用牛顿-拉菲森迭代方法求解方程组。同时介绍了梯度上升算法和牛顿迭代的收敛速度比较。最后给出了公式法和logistic regression的实现示例。 ... [详细]
  • 颜色迁移(reinhard VS welsh)
    不要谈什么天分,运气,你需要的是一个截稿日,以及一个不交稿就能打爆你狗头的人,然后你就会被自己的才华吓到。------ ... [详细]
author-avatar
ngzhaicai9672364
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有