热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

C++模板template用法小结(推荐)

这篇文章主要介绍了C++模板template用法总结,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

引言

模板(Template)指C++程序设计设计语言中采用类型作为参数的程序设计,支持通用程序设计。C++ 的标准库提供许多有用的函数大多结合了模板的观念,如STL以及IO Stream。

函数模板

在c++入门中,很多人会接触swap(int&, int&)这样的函数类似代码如下:

void swap(int&a , int& b) {
 int temp = a;
 a = b;
 b = temp;
}

但是如果是要支持long,string,自定义class的swap函数,代码和上述代码差不多,只是类型不同,这个时候就是我们定义swap的函数模板,就可以复用不同类型的swap函数代码,函数模板的声明形式如下:

template  function_declaration;
template  function_declaration;

swap函数模板的声明和定义代码如下:

//method.h
template void swap(T& t1, T& t2);
#include "method.cpp"

//method.cpp

template void swap(T& t1, T& t2) {
 T tmpT;
 tmpT = t1;
 t1 = t2;
 t2 = tmpT;
}

 上述是模板的声明和定义了,那模板如何实例化呢,模板的实例化是编译器做的事情,与程序员无关,那么上述模板如何使用呢,代码如下:

//main.cpp
#include 
#include "method.h"
int main() {
 //模板方法 
 int num1 = 1, num2 = 2;
 swap(num1, num2);
 printf("num1:%d, num2:%d\n", num1, num2); 
 return 0;
}

这里使用swap函数,必须包含swap的定义,否则编译会出错,这个和一般的函数使用不一样。所以必须在method.h文件的最后一行加入#include "method.cpp"。

类模板

考虑我们写一个简单的栈的类,这个栈可以支持int类型,long类型,string类型等等,不利用类模板,我们就要写三个以上的stack类,其中代码基本一样,通过类模板,我们可以定义一个简单的栈模板,再根据需要实例化为int栈,long栈,string栈。

//statck.h
template  class Stack {
 public:
  Stack();
  ~Stack();
  void push(T t);
  T pop();
  bool isEmpty();
 private:
  T *m_pT;  
  int m_maxSize;
  int m_size;
};
#include "stack.cpp"
//stack.cpp
template  Stack::Stack(){
 m_maxSize = 100;  
 m_size = 0;
 m_pT = new T[m_maxSize];
}
template  Stack::~Stack() {
 delete [] m_pT ;
}
template  void Stack::push(T t) {
 m_size++;
 m_pT[m_size - 1] = t;
}
template  T Stack::pop() {
 T t = m_pT[m_size - 1];
 m_size--;
 return t;
}
template  bool Stack::isEmpty() {
 return m_size == 0;
}

上述定义了一个类模板--栈,这个栈很简单,只是为了说明类模板如何使用而已,最多只能支持100个元素入栈,使用示例如下:

//main.cpp
#include 
#include "stack.h"
int main() {
 Stack intStack;
 intStack.push(1);
 intStack.push(2);
 intStack.push(3);
 
 while (!intStack.isEmpty()) {
  printf("num:%d\n", intStack.pop());
 }
 return 0;
}

模板参数

模板可以有类型参数,也可以有常规的类型参数int,也可以有默认模板参数,例如

template class Stack{...}

上述类模板的栈有一个限制,就是最多只能支持100个元素,我们可以使用模板参数配置这个栈的最大元素数,如果不配置,就设置默认最大值为100,代码如下:

//statck.h
template  class Stack {
 public:
  Stack();
  ~Stack();
  void push(T t);
  T pop();
  bool isEmpty();
 private:
  T *m_pT;  
  int m_maxSize;
  int m_size;
};
#include "stack.cpp"
//stack.cpp
template  Stack::Stack(){
 m_maxSize = maxsize;  
 m_size = 0;
 m_pT = new T[m_maxSize];
}
template  Stack::~Stack() {
 delete [] m_pT ;
}
template  void Stack::push(T t) {
 m_size++;
 m_pT[m_size - 1] = t;
}
template  T Stack::pop() {
 T t = m_pT[m_size - 1];
 m_size--;
 return t;
}
template  bool Stack::isEmpty() {
 return m_size == 0;
}

使用示例如下:

//main.cpp
#include 
#include "stack.h"
int main() {
 int maxsize = 1024;
 Stack intStack;
 for (int i = 0; i 

模板专门化

 当我们要定义模板的不同实现,我们可以使用模板的专门化。例如我们定义的stack类模板,如果是char*类型的栈,我们希望可以复制char的所有数据到stack类中,因为只是保存char指针,char指针指向的内存有可能会失效,stack弹出的堆栈元素char指针,指向的内存可能已经无效了。还有我们定义的swap函数模板,在vector或者list等容器类型时,如果容器保存的对象很大,会占用大量内存,性能下降,因为要产生一个临时的大对象保存a,这些都需要模板的专门化才能解决。

函数模板专门化

  假设我们swap函数要处理一个情况,我们有两个很多元素的vector,在使用原来的swap函数,执行tmpT = t1要拷贝t1的全部元素,占用大量内存,造成性能下降,于是我们系统通过vector.swap函数解决这个问题,代码如下:

//method.h
template void swap(T& t1, T& t2);
#include "method.cpp"
#include 
using namespace std;
template void swap(T& t1, T& t2) {
 T tmpT;
 tmpT = t1;
 t1 = t2;
 t2 = tmpT;
}
template<> void swap(std::vector& t1, std::vector& t2) {
 t1.swap(t2);
}

template<>前缀表示这是一个专门化,描述时不用模板参数,使用示例如下:

//main.cpp
#include 
#include 
#include 
#include "method.h"
int main() {
 using namespace std;
 //模板方法 
 string str1 = "1", str2 = "2";
 swap(str1, str2);
 printf("str1:%s, str2:%s\n", str1.c_str(), str2.c_str()); 
 
 vector v1, v2;
 v1.push_back(1);
 v2.push_back(2);
 swap(v1, v2);
 for (int i = 0; i 

vector的swap代码还是比较局限,如果要用模板专门化解决所有vector的swap,该如何做呢,只需要把下面代码

template<> void swap(std::vector& t1, std::vector& t2) {
 t1.swap(t2);}

改为

template void swap(std::vector& t1, std::vector& t2) {
 t1.swap(t2);
}

就可以了,其他代码不变。

类模板专门化

 请看下面compare代码:

//compare.h
template 
 class compare
 {
 public:
 bool equal(T t1, T t2)
 {
  return t1 == t2;
 }
};
#include 
#include "compare.h"
 int main()
 {
 using namespace std;
 char str1[] = "Hello";
 char str2[] = "Hello";
 compare c1;
 compare c2; 
 cout <

在比较两个整数,compare的equal方法是正确的,但是compare的模板参数是char*时,这个模板就不能工作了,于是修改如下:

//compare.h
#include 
template 
 class compare
 {
 public:
 bool equal(T t1, T t2)
 {
  return t1 == t2;
 }
};
template<>class compare 
{
public:
 bool equal(char* t1, char* t2)
 {
  return strcmp(t1, t2) == 0;
 }
};

main.cpp文件不变,此代码可以正常工作。

模板类型转换

还记得我们自定义的Stack模板吗,在我们的程序中,假设我们定义了Shape和Circle类,代码如下:

//shape.h
class Shape {

};
class Circle : public Shape {
};

然后我们希望可以这么使用:

这里是无法

//main.cpp
#include 
#include "stack.h"
#include "shape.h"
int main() {
 Stack pcircleStack;
 Stack pshapeStack;
 pcircleStack.push(new Circle);
 pshapeStack = pcircleStack;
 return 0;
}

编译的,因为Stack不是Stack的父类,然而我们却希望代码可以这么工作,那我们就要定义转换运算符了,Stack代码如下:

//statck.h
template  class Stack {
 public:
  Stack();
  ~Stack();
  void push(T t);
  T pop();
  bool isEmpty();
  template operator Stack();
 private:
  T *m_pT;  
  int m_maxSize;
  int m_size;
};
#include "stack.cpp"
template  Stack::Stack(){
 m_maxSize = 100;  
 m_size = 0;
 m_pT = new T[m_maxSize];
}
template  Stack::~Stack() {
 delete [] m_pT ;
}
template  void Stack::push(T t) {
 m_size++;
 m_pT[m_size - 1] = t;
}
template  T Stack::pop() {
 T t = m_pT[m_size - 1];
 m_size--;
 return t;
}
template  bool Stack::isEmpty() {
 return m_size == 0;
}
template  template  Stack::operator Stack() {
 Stack StackT2;
 for (int i = 0; i 
#include "stack.h"
#include "shape.h"
int main() {
 Stack pcircleStack;
 Stack pshapeStack;
 pcircleStack.push(new Circle);
 pshapeStack = pcircleStack;
 return 0;
}

这样,Stack或者Stack就可以自动转换为Stack或者Stack,如果转换的类型是Stack到Stack,编译器会报错。

其他

一个类没有模板参数,但是成员函数有模板参数,是可行的,代码如下:

class Util {
 public:
  template  bool equal(T t1, T t2) {
   return t1 == t2;
  }
};

int main() {
 Util util;
 int a = 1, b = 2;
 util.equal(1, 2);
 return 0;
}

甚至可以把Util的equal声明为static,代码如下:

class Util {
 public:
   template  static bool equal(T t1, T t2) {
   return t1 == t2;
  }
};

int main() {
 int a = 1, b = 2;
 Util::equal(1, 2);
 return 0;
}

总结

到此这篇关于C++模板template用法总结的文章就介绍到这了,更多相关C++模板template用法内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!


推荐阅读
  • 本文介绍了OC学习笔记中的@property和@synthesize,包括属性的定义和合成的使用方法。通过示例代码详细讲解了@property和@synthesize的作用和用法。 ... [详细]
  • 本文介绍了在Mac上安装Xamarin并使用Windows上的VS开发iOS app的方法,包括所需的安装环境和软件,以及使用Xamarin.iOS进行开发的步骤。通过这种方法,即使没有Mac或者安装苹果系统,程序员们也能轻松开发iOS app。 ... [详细]
  • 2022年的风口:你看不起的行业,真的很挣钱!
    本文介绍了2022年的风口,探讨了一份稳定的副业收入对于普通人增加收入的重要性,以及如何抓住风口来实现赚钱的目标。文章指出,拼命工作并不一定能让人有钱,而是需要顺应时代的方向。 ... [详细]
  • C++语言入门:数组的基本知识和应用领域
    本文介绍了C++语言的基本知识和应用领域,包括C++语言与Python语言的区别、C++语言的结构化特点、关键字和控制语句的使用、运算符的种类和表达式的灵活性、各种数据类型的运算以及指针概念的引入。同时,还探讨了C++语言在代码效率方面的优势和与汇编语言的比较。对于想要学习C++语言的初学者来说,本文提供了一个简洁而全面的入门指南。 ... [详细]
  • 本文介绍了H5游戏性能优化和调试技巧,包括从问题表象出发进行优化、排除外部问题导致的卡顿、帧率设定、减少drawcall的方法、UI优化和图集渲染等八个理念。对于游戏程序员来说,解决游戏性能问题是一个关键的任务,本文提供了一些有用的参考价值。摘要长度为183字。 ... [详细]
  • STL迭代器的种类及其功能介绍
    本文介绍了标准模板库(STL)定义的五种迭代器的种类和功能。通过图表展示了这几种迭代器之间的关系,并详细描述了各个迭代器的功能和使用方法。其中,输入迭代器用于从容器中读取元素,输出迭代器用于向容器中写入元素,正向迭代器是输入迭代器和输出迭代器的组合。本文的目的是帮助读者更好地理解STL迭代器的使用方法和特点。 ... [详细]
  • 本文讨论了Alink回归预测的不完善问题,指出目前主要针对Python做案例,对其他语言支持不足。同时介绍了pom.xml文件的基本结构和使用方法,以及Maven的相关知识。最后,对Alink回归预测的未来发展提出了期待。 ... [详细]
  • 本文介绍了如何找到并终止在8080端口上运行的进程的方法,通过使用终端命令lsof -i :8080可以获取在该端口上运行的所有进程的输出,并使用kill命令终止指定进程的运行。 ... [详细]
  • 本文讨论了如何优化解决hdu 1003 java题目的动态规划方法,通过分析加法规则和最大和的性质,提出了一种优化的思路。具体方法是,当从1加到n为负时,即sum(1,n)sum(n,s),可以继续加法计算。同时,还考虑了两种特殊情况:都是负数的情况和有0的情况。最后,通过使用Scanner类来获取输入数据。 ... [详细]
  • 本文介绍了九度OnlineJudge中的1002题目“Grading”的解决方法。该题目要求设计一个公平的评分过程,将每个考题分配给3个独立的专家,如果他们的评分不一致,则需要请一位裁判做出最终决定。文章详细描述了评分规则,并给出了解决该问题的程序。 ... [详细]
  • 本文介绍了C++中省略号类型和参数个数不确定函数参数的使用方法,并提供了一个范例。通过宏定义的方式,可以方便地处理不定参数的情况。文章中给出了具体的代码实现,并对代码进行了解释和说明。这对于需要处理不定参数的情况的程序员来说,是一个很有用的参考资料。 ... [详细]
  • 本文主要解析了Open judge C16H问题中涉及到的Magical Balls的快速幂和逆元算法,并给出了问题的解析和解决方法。详细介绍了问题的背景和规则,并给出了相应的算法解析和实现步骤。通过本文的解析,读者可以更好地理解和解决Open judge C16H问题中的Magical Balls部分。 ... [详细]
  • 本文讨论了使用差分约束系统求解House Man跳跃问题的思路与方法。给定一组不同高度,要求从最低点跳跃到最高点,每次跳跃的距离不超过D,并且不能改变给定的顺序。通过建立差分约束系统,将问题转化为图的建立和查询距离的问题。文章详细介绍了建立约束条件的方法,并使用SPFA算法判环并输出结果。同时还讨论了建边方向和跳跃顺序的关系。 ... [详细]
  • 如何用UE4制作2D游戏文档——计算篇
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了如何用UE4制作2D游戏文档——计算篇相关的知识,希望对你有一定的参考价值。 ... [详细]
  • 本文介绍了Python函数的定义与调用的方法,以及函数的作用,包括增强代码的可读性和重用性。文章详细解释了函数的定义与调用的语法和规则,以及函数的参数和返回值的用法。同时,还介绍了函数返回值的多种情况和多个值的返回方式。通过学习本文,读者可以更好地理解和使用Python函数,提高代码的可读性和重用性。 ... [详细]
author-avatar
临海小少年
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有