热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Android加载不同DPI资源与内存消耗之间的关系

DPI(Dotsperinch)是屏幕像素密度的衡量标准,Android为支持不同物理尺寸的屏幕,允许APP针对不同DPI配置不同资源,也允许“偷懒”只配置一种,让Android自

by Will of TinyLab.org
2015/04/21

Android DPI 分级标准简介

Android 设备在物理尺寸和屏幕密度上都有很大的不同,为了简化多设备的设计方案,就是设定一套分级标准。屏幕密度上的分级标准就是:LDPI、MDPI、HDPI、XHDPI,也就是各种大小的 DPI(Dots per inch)。DPI 就是屏幕像素密度的衡量标准

不同设备共享同一套 DPI 资源有哪些问题?

现在进入正题。

Q:不少公司出于简化设计和研发的目的,往往在方案中只使用一套 DPI 资源,这样做可不可行呢?

A:Android 有一套加载资源的规则,如果对应的 DPI 文件夹不存在要用的资源就会按照规则去找其它的DPI 文件夹,如果最终能找到就可以使用。所以上述方案是“可行的”– 可以正常运行不报错的。那可行性的另一个方面就是对性能有没有影响。上述问题就变为下面问题:

Q:同一套 DPI 资源在不同手机上使用时内存消耗有什么不同? 或 App 中加载不同 DPI 文件夹中的资源内存消耗有什么不同?

问题:DPI 越小的文件夹内存消耗越大?

下面以 png 图片的加载为例。

技术分享

原始图片(attribute—width:960,height:540,bit depth:32,size:217082bytes)。

做简单的 demo app,即在 activity 中只加载这一个图片。

放在 hdpi 文件夹中,dumpsys meminfo 后发现 Heap Alloc 为 5420,远远大于 size,所以先肯定的是内存消耗与图片文件大小无关。

再放到不同的 DPI 文件夹中发现:越是 DPI 小的文件夹内存消耗越大!

分析:加载低 DPI 资源会额外拉伸放大图片

由于 Heap Alloc 只能看到堆的分配总体大小,不能看到上述发现有什么“规律”,所以接着使用 MAT 分析。

在 hdpi 中抓取 hprof 文件,用 MAT 打开:

技术分享

见图中的 byte 数组,大小为 2073600,这个大小就是加载的那张 png 图片占用的内存大小。

分别分析图片资源放在 mdpi、ldpi 和 xhdpi 时的 hprof 文件,byte 数组大小分别为:4665600、8294400、1166400。不同 DPI 文件夹与图片占用的内存大小关系如下:

DPIs ldpi mdpi hdpi xhdpi
Byte[] size 8294400 4665600 2073600 1166400
Ratio 8^2 6^2 4^2 3^2

开始就说到 Android 的屏幕密度的分级标准是 LDPI、MDPI、HDPI、XHDPI 这些各种大小的 DPI。也就是 LDPI 的设备默认使用的是 ldpi 文件夹下的资源。根据 DPI 值的大小再整理一下,屏幕像素密度的值对应使用的 DPI 文件夹关系如下:

DPIs ldpi mdpi hdpi xhdpi
Density 120 160 240 320
Ratio 3 4 6 8

根据上面两个表格的 Ratio 值,可以发现内存占用和 DPI 资源是有一定规律的。其实我们知道 png 加载内存的消耗与文件大小无关,而是与 png 图片的长宽和位深有关,也就是:

Memory Consumption Size(UOM:byte) = Width * Height * (Bit depth / 8)

上面公式是不能完全在 Android 中使用的,根据上述找到的规律,Android 中 png 图片内存消耗公式可以概括为:

Memory Consumption Size(UOM:byte) = ScaledWidth * ScaledHeight * (Bit depth / 8)
ScaledWidth = Width * factor
ScaledHeight = Height * factor
factor = DENSITY_DEVICE / ResourceDensity  // DENSITY_DEVICE 是设备的 DPI 大小, ResourceDensity 是设备加载的 DPI 文件夹对应的 DPI 大小

所以:

Memory Consumption Size = Width * Height * (DENSITY_DEVICE / ResourceDensity)^2 * (Bit depth / 8)

上述 hdpi 中的 2073600 可以由此计算得出:

960 * 540 * (240 / 240)^2 * (32 / 8) = 2073600

在 BitmapFactory.cpp 的 doDecode() 中 添加 log ,可验证上述公式(资源在 xdpi 中,sx、sy 就是上述公式中的 factor):

01-15 21:00:49.479  3079  3079 D BitmapFactory: doDecode----sx:0.750000 ,sy:0.750000 ,scaledWidth:405 ,scaledHeight:720 ,decodingBitmap.width:540 ,decodingBitmap.heigth:960

Android 加载资源默认选用和设备 DPI 匹配的资源,如果没有就去到其它 DPI 文件夹中寻找资源。找到后它会认为使用了不同 DPI 的资源,为了保持与设备 DPI 一致,就会对资源做拉伸或缩放处理再加载。下面是上述 png 图片分别放在 mdpi 和 xxhdpi 文件夹下的截图:

技术分享 技术分享
mdpi xxhdpi

很明显就可以看到在 xxhdpi 下时的截图模糊了不少。使用的测试手机是 hdpi 的,但是默认 hdpi 找不到图片资源,它就会按照一定规则找到我放在 xxhdpi 中的资源。手机认为从 xxhdpi 获取的资源比手机的 dpi 要高,它就会按照表格中的比例把资源缩小,也就是加载到内存中的图片资源已经是原来大小的 1/2,占用的内存当然会缩小不做缩放操作图片的 1/4。但是坏处也是显而易见的,显示到手机的图片资源清晰度下降,模糊了很多。

相反的,hdpi 的手机加载低 dpi 资源,例如 ldpi,加载到内存前会先按比例拉伸。拉伸后再显示到手机中清晰度是没有问题,但是内存占用确增大为原来的 4 倍!还是要注意到这一点,如果图片资源在 app 中放错 dpi 文件夹,使用体验会大打折扣,或者尽量使用 9patch 图片。

小结:建议根据设备配置 DPI 资源

现在就可以回答提出的问题了:

Q:同一套 DPI 资源在不同手机上使用时内存消耗有什么不同? 或 App 中加载不同 DPI 文件夹中的资源内存消耗有什么不同?

A:不要使用一套资源适用于各种不同 DPI 的设备,这样图片的清晰度和内存消耗都会有问题。这就是为什么 Android 要求对不同 DPI 文件做不同的资源,并且不同 DPI 资源的长宽比要与 DPI Ratio 相对应。

PS:此文结论一句话就能给说清楚,但推导的过程更重要。爱因斯坦说过:Imagination is more important than knowledge.

参考资料

参考的 Android 源码:

/frameworks/base/core/java/android/util/DisplayMetrics.java 
/frameworks/base/graphics/java/android/graphics/Bitmap.java
/frameworks/base/graphics/java/android/graphics/drawable/BitmapDrawable.java
/frameworks/base/core/jni/android/graphics/BitmapFactory.cpp

Android加载不同DPI资源与内存消耗之间的关系


推荐阅读
  • 本文介绍了OC学习笔记中的@property和@synthesize,包括属性的定义和合成的使用方法。通过示例代码详细讲解了@property和@synthesize的作用和用法。 ... [详细]
  • 本文介绍了lua语言中闭包的特性及其在模式匹配、日期处理、编译和模块化等方面的应用。lua中的闭包是严格遵循词法定界的第一类值,函数可以作为变量自由传递,也可以作为参数传递给其他函数。这些特性使得lua语言具有极大的灵活性,为程序开发带来了便利。 ... [详细]
  • 基于layUI的图片上传前预览功能的2种实现方式
    本文介绍了基于layUI的图片上传前预览功能的两种实现方式:一种是使用blob+FileReader,另一种是使用layUI自带的参数。通过选择文件后点击文件名,在页面中间弹窗内预览图片。其中,layUI自带的参数实现了图片预览功能。该功能依赖于layUI的上传模块,并使用了blob和FileReader来读取本地文件并获取图像的base64编码。点击文件名时会执行See()函数。摘要长度为169字。 ... [详细]
  • 本文介绍了使用Java实现大数乘法的分治算法,包括输入数据的处理、普通大数乘法的结果和Karatsuba大数乘法的结果。通过改变long类型可以适应不同范围的大数乘法计算。 ... [详细]
  • HDU 2372 El Dorado(DP)的最长上升子序列长度求解方法
    本文介绍了解决HDU 2372 El Dorado问题的一种动态规划方法,通过循环k的方式求解最长上升子序列的长度。具体实现过程包括初始化dp数组、读取数列、计算最长上升子序列长度等步骤。 ... [详细]
  • 本文讨论了如何优化解决hdu 1003 java题目的动态规划方法,通过分析加法规则和最大和的性质,提出了一种优化的思路。具体方法是,当从1加到n为负时,即sum(1,n)sum(n,s),可以继续加法计算。同时,还考虑了两种特殊情况:都是负数的情况和有0的情况。最后,通过使用Scanner类来获取输入数据。 ... [详细]
  • 本文介绍了C#中数据集DataSet对象的使用及相关方法详解,包括DataSet对象的概述、与数据关系对象的互联、Rows集合和Columns集合的组成,以及DataSet对象常用的方法之一——Merge方法的使用。通过本文的阅读,读者可以了解到DataSet对象在C#中的重要性和使用方法。 ... [详细]
  • Mac OS 升级到11.2.2 Eclipse打不开了,报错Failed to create the Java Virtual Machine
    本文介绍了在Mac OS升级到11.2.2版本后,使用Eclipse打开时出现报错Failed to create the Java Virtual Machine的问题,并提供了解决方法。 ... [详细]
  • 在说Hibernate映射前,我们先来了解下对象关系映射ORM。ORM的实现思想就是将关系数据库中表的数据映射成对象,以对象的形式展现。这样开发人员就可以把对数据库的操作转化为对 ... [详细]
  • 本文介绍了在SpringBoot中集成thymeleaf前端模版的配置步骤,包括在application.properties配置文件中添加thymeleaf的配置信息,引入thymeleaf的jar包,以及创建PageController并添加index方法。 ... [详细]
  • 知识图谱——机器大脑中的知识库
    本文介绍了知识图谱在机器大脑中的应用,以及搜索引擎在知识图谱方面的发展。以谷歌知识图谱为例,说明了知识图谱的智能化特点。通过搜索引擎用户可以获取更加智能化的答案,如搜索关键词"Marie Curie",会得到居里夫人的详细信息以及与之相关的历史人物。知识图谱的出现引起了搜索引擎行业的变革,不仅美国的微软必应,中国的百度、搜狗等搜索引擎公司也纷纷推出了自己的知识图谱。 ... [详细]
  • 本文详细介绍了Linux中进程控制块PCBtask_struct结构体的结构和作用,包括进程状态、进程号、待处理信号、进程地址空间、调度标志、锁深度、基本时间片、调度策略以及内存管理信息等方面的内容。阅读本文可以更加深入地了解Linux进程管理的原理和机制。 ... [详细]
  • 1,关于死锁的理解死锁,我们可以简单的理解为是两个线程同时使用同一资源,两个线程又得不到相应的资源而造成永无相互等待的情况。 2,模拟死锁背景介绍:我们创建一个朋友 ... [详细]
  • 后台获取视图对应的字符串
    1.帮助类后台获取视图对应的字符串publicclassViewHelper{将View输出为字符串(注:不会执行对应的ac ... [详细]
  • 《数据结构》学习笔记3——串匹配算法性能评估
    本文主要讨论串匹配算法的性能评估,包括模式匹配、字符种类数量、算法复杂度等内容。通过借助C++中的头文件和库,可以实现对串的匹配操作。其中蛮力算法的复杂度为O(m*n),通过随机取出长度为m的子串作为模式P,在文本T中进行匹配,统计平均复杂度。对于成功和失败的匹配分别进行测试,分析其平均复杂度。详情请参考相关学习资源。 ... [详细]
author-avatar
手机用户2602914293
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有