热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【深度学习】吴恩达网易公开课练习(class1week4)

概要class1week3的任务是实现单隐层的神经网络代码,而本次任务是实现有L层的多层深度全连接神经网络。关键点跟class3的基本相同,算清各个参数的维度即可。关键变量:m:训练样本

概要

class1 week3的任务是实现单隐层的神经网络代码,而本次任务是实现有L层的多层深度全连接神经网络。关键点跟class3的基本相同,算清各个参数的维度即可。

关键变量:

  • m: 训练样本数量
  • n[l]:第l层的节点数量,输入认为是第0层
  • 方括号上标[l]: 第l层
  • 圆括号上标(i): 第i个样本

$$X = \left[\begin{matrix}\vdots & \vdots & \vdots & \vdots \\x^{(1)} & x^{(2)} & \vdots & x^{(m)} \\\vdots & \vdots & \vdots & \vdots \\\end{matrix}\right]_{(n[0], m)}$$

$$W^{[l]} = \left[\begin{matrix}\cdots & w^{[l] T}_1 & \cdots \\\cdots & w^{[l] T}_2 & \cdots \\\cdots & \cdots & \cdots \\\cdots & w^{[l] T}_{n[l]} & \cdots \\\end{matrix}\right]_{(n[l], n[l-1])}$$

$$b^{[l]} = \left[\begin{matrix}b^{[l]}_1 \\b^{[l]}_2 \\\vdots \\b^{[l]}_{n[l]} \\\end{matrix}\right]_{(n[l], 1)}$$

$$A^{[l]}=\left[\begin{matrix}\vdots & \vdots & \vdots & \vdots \\a^{[l](1)} & a^{[l](2)} & \vdots & a^{[l](m)} \\\vdots & \vdots & \vdots & \vdots \\\end{matrix}\right]_{(n[l], m)}$$

$$Z^{[l]}=\left[\begin{matrix}\vdots & \vdots & \vdots & \vdots \\z^{[l](1)} & z^{[l](2)} & \vdots & z^{[l](m)} \\\vdots & \vdots & \vdots & \vdots \\\end{matrix}\right]_{(n[l], m)}$$


深度神经网络关键公式:

  • 前向传播

$$Z^{[l]}=W^{[l]}A^{[l-1]}+b^{[l]}$$$$A^{[l]}=g^{[l]}(Z^{[l]})$$

当l \(g^{[l]}\)=relu函数
当l = L时,\(g^{[L]}\)=sigmoid函数
即,输出层激活函数用sigmoid,其他层激活函数用relu函数。

  • 反向传播

$$ dZ^{[l]} = dA^{[l]} * g'(Z^{[l]})$$$$ dW^{[l]} = \frac{\partial \mathcal{L} }{\partial W^{[l]}} = \frac{1}{m} dZ^{[l]} A^{[l-1] T}$$$$ db^{[l]} = \frac{\partial \mathcal{L} }{\partial b^{[l]}} = \frac{1}{m} \sum_{i = 1}^{m} dZ^{[l](i)}$$$$ dA^{[l-1]} = \frac{\partial \mathcal{L} }{\partial A^{[l-1]}} = W^{[l] T} dZ^{[l]}$$

初始化dAL:

dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
  • cost计算

$$-\frac{1}{m} \sum\limits_{i = 1}^{m} (y^{(i)}\log\left(a^{[L] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[L](i)}\right))$$

深度全连接神经网代码:

  • 关键函数:
# 初始化参数,每一层的权重初始化为随机
# 输入layer_dims是每一层的节点数
# 输出parameters是字典,可以通过parameters['W' + str(l)],parameters['b' + str(l)]获取每一层的初始参数
parameters = initialize_parameters_deep(layer_dims)


# 线性前向传播函数
# 根据Z = W*A_prev + b计算当前层的Z, linear_cache=(A_prev, W, b)
Z, linear_cache = linear_forward(A_prev, W, b)


# 线性激活前向传播函数
# 根据A = g(Z) = g(W*A_prev + b)计算前向传播函数, 其中linear_activation_cache=(linear_cache, activation_cache)=((A_prev, W, b), (Z))
A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "sigmoid")


# L层完整的前向传输过程,输出的AL是最终输出,caches是每一层的缓存
AL, caches = L_model_forward(X, parameters)


# 线性反向传播函数
# 通过上述反向传播函数,通过dZ推导出dA_prev, dW, db,其中利用了缓存结果
dA_prev, dW, db = linear_backward(dZ, linear_cache)


# 线性激活函数反向传播
# 通过前面的linear_backward和激活函数导数计算dA_prev, dW, db
dA_prev, dW, db = linear_activation_backward(dA, linear_activation_cache, activation = "sigmoid")


# L层反向传播
# grads是每一层的导数,grads["dA" + str(l)], grads["dW" + str(l)], grads["db" + str(l)]格式
grads = L_model_backward(AL, Y, caches)


# 根据学习速率跟新参数
parameters = update_parameters(parameters, grads, 0.1)


# 整体模型函数,通过迭代次数循环调用上述前向传播和反向传播函数实现
parameters = L_layer_model(train_x, train_y, layers_dims, learning_rate = 0.0075, num_iterations = 2500, print_cost = True)
  • 完整代码:
import numpy as np
import matplotlib.pyplot as plt
import h5py


def sigmoid(Z):
"""
Implements the sigmoid activation in numpy

Arguments:
Z -- numpy array of any shape

Returns:
A -- output of sigmoid(z), same shape as Z
cache -- returns Z as well, useful during backpropagation
"""

A = 1/(1+np.exp(-Z))
cache = Z

return A, cache

def relu(Z):
"""
Implement the RELU function.

Arguments:
Z -- Output of the linear layer, of any shape

Returns:
A -- Post-activation parameter, of the same shape as Z
cache -- a python dictionary containing "A" ; stored for computing the backward pass efficiently
"""

A = np.maximum(0,Z)

assert(A.shape == Z.shape)

cache = Z
return A, cache


def relu_backward(dA, cache):
"""
Implement the backward propagation for a single RELU unit.

Arguments:
dA -- post-activation gradient, of any shape
cache -- 'Z' where we store for computing backward propagation efficiently

Returns:
dZ -- Gradient of the cost with respect to Z
"""

Z = cache
dZ = np.array(dA, copy=True) # just converting dz to a correct object.

# When z <= 0, you should set dz to 0 as well.
dZ[Z <= 0] = 0

assert (dZ.shape == Z.shape)

return dZ

def sigmoid_backward(dA, cache):
"""
Implement the backward propagation for a single SIGMOID unit.

Arguments:
dA -- post-activation gradient, of any shape
cache -- 'Z' where we store for computing backward propagation efficiently

Returns:
dZ -- Gradient of the cost with respect to Z
"""

Z = cache

s = 1/(1+np.exp(-Z))
dZ = dA * s * (1-s)

assert (dZ.shape == Z.shape)

return dZ


def load_data():
train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r")
train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels

test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r")
test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels

classes = np.array(test_dataset["list_classes"][:]) # the list of classes

train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))

return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes


def initialize_parameters_deep(layer_dims):
"""
Arguments:
layer_dims -- python array (list) containing the dimensions of each layer in our network

Returns:
parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
bl -- bias vector of shape (layer_dims[l], 1)
"""

np.random.seed(1)
parameters = {}
L = len(layer_dims) # number of layers in the network

for l in range(1, L):
parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) / np.sqrt(layer_dims[l-1]) #*0.01
parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))

assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))
assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))


return parameters


def linear_forward(A, W, b):
"""
Implement the linear part of a layer's forward propagation.

Arguments:
A -- activations from previous layer (or input data): (size of previous layer, number of examples)
W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
b -- bias vector, numpy array of shape (size of the current layer, 1)

Returns:
Z -- the input of the activation function, also called pre-activation parameter
cache -- a python dictionary containing "A", "W" and "b" ; stored for computing the backward pass efficiently
"""

Z = W.dot(A) + b

assert(Z.shape == (W.shape[0], A.shape[1]))
cache = (A, W, b)

return Z, cache

def linear_activation_forward(A_prev, W, b, activation):
"""
Implement the forward propagation for the LINEAR->ACTIVATION layer

Arguments:
A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
b -- bias vector, numpy array of shape (size of the current layer, 1)
activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"

Returns:
A -- the output of the activation function, also called the post-activation value
cache -- a python dictionary containing "linear_cache" and "activation_cache";
stored for computing the backward pass efficiently
"""

if activation == "sigmoid":
# Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = sigmoid(Z)

elif activation == "relu":
# Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = relu(Z)

assert (A.shape == (W.shape[0], A_prev.shape[1]))
cache = (linear_cache, activation_cache)

return A, cache

def L_model_forward(X, parameters):
"""
Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation

Arguments:
X -- data, numpy array of shape (input size, number of examples)
parameters -- output of initialize_parameters_deep()

Returns:
AL -- last post-activation value
caches -- list of caches containing:
every cache of linear_relu_forward() (there are L-1 of them, indexed from 0 to L-2)
the cache of linear_sigmoid_forward() (there is one, indexed L-1)
"""

caches = []
A = X
L = len(parameters) // 2 # number of layers in the neural network

# Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
for l in range(1, L):
A_prev = A
A, cache = linear_activation_forward(A_prev, parameters['W' + str(l)], parameters['b' + str(l)], activation = "relu")
caches.append(cache)

# Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)], activation = "sigmoid")
caches.append(cache)

assert(AL.shape == (1,X.shape[1]))

return AL, caches

def compute_cost(AL, Y):
"""
Implement the cost function defined by equation (7).

Arguments:
AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)

Returns:
cost -- cross-entropy cost
"""

m = Y.shape[1]

# Compute loss from aL and y.
cost = (1./m) * (-np.dot(Y,np.log(AL).T) - np.dot(1-Y, np.log(1-AL).T))

cost = np.squeeze(cost) # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
assert(cost.shape == ())

return cost

def linear_backward(dZ, cache):
"""
Implement the linear portion of backward propagation for a single layer (layer l)

Arguments:
dZ -- Gradient of the cost with respect to the linear output (of current layer l)
cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer

Returns:
dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
dW -- Gradient of the cost with respect to W (current layer l), same shape as W
db -- Gradient of the cost with respect to b (current layer l), same shape as b
"""
A_prev, W, b = cache
m = A_prev.shape[1]

dW = 1./m * np.dot(dZ,A_prev.T)
db = 1./m * np.sum(dZ, axis = 1, keepdims = True)
dA_prev = np.dot(W.T,dZ)

assert (dA_prev.shape == A_prev.shape)
assert (dW.shape == W.shape)
assert (db.shape == b.shape)

return dA_prev, dW, db

def linear_activation_backward(dA, cache, activation):
"""
Implement the backward propagation for the LINEAR->ACTIVATION layer.

Arguments:
dA -- post-activation gradient for current layer l
cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"

Returns:
dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
dW -- Gradient of the cost with respect to W (current layer l), same shape as W
db -- Gradient of the cost with respect to b (current layer l), same shape as b
"""
linear_cache, activation_cache = cache

if activation == "relu":
dZ = relu_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)

elif activation == "sigmoid":
dZ = sigmoid_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)

return dA_prev, dW, db

def L_model_backward(AL, Y, caches):
"""
Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group

Arguments:
AL -- probability vector, output of the forward propagation (L_model_forward())
Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
caches -- list of caches containing:
every cache of linear_activation_forward() with "relu" (there are (L-1) or them, indexes from 0 to L-2)
the cache of linear_activation_forward() with "sigmoid" (there is one, index L-1)

Returns:
grads -- A dictionary with the gradients
grads["dA" + str(l)] = ...
grads["dW" + str(l)] = ...
grads["db" + str(l)] = ...
"""
grads = {}
L = len(caches) # the number of layers
m = AL.shape[1]
Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL

# Initializing the backpropagation
dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))

# Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]
current_cache = caches[L-1]
grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, activation = "sigmoid")

for l in reversed(range(L-1)):
# lth layer: (RELU -> LINEAR) gradients.
current_cache = caches[l]
dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 2)], current_cache, activation = "relu")
grads["dA" + str(l + 1)] = dA_prev_temp
grads["dW" + str(l + 1)] = dW_temp
grads["db" + str(l + 1)] = db_temp

return grads

def update_parameters(parameters, grads, learning_rate):
"""
Update parameters using gradient descent

Arguments:
parameters -- python dictionary containing your parameters
grads -- python dictionary containing your gradients, output of L_model_backward

Returns:
parameters -- python dictionary containing your updated parameters
parameters["W" + str(l)] = ...
parameters["b" + str(l)] = ...
"""

L = len(parameters) // 2 # number of layers in the neural network

# Update rule for each parameter. Use a for loop.
for l in range(L):
parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * grads["dW" + str(l+1)]
parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * grads["db" + str(l+1)]

return parameters


# GRADED FUNCTION: L_layer_model

def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):#lr was 0.009
"""
Implements a L-layer neural network: [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID.

Arguments:
X -- data, numpy array of shape (number of examples, num_px * num_px * 3)
Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
layers_dims -- list containing the input size and each layer size, of length (number of layers + 1).
learning_rate -- learning rate of the gradient descent update rule
num_iterations -- number of iterations of the optimization loop
print_cost -- if True, it prints the cost every 100 steps

Returns:
parameters -- parameters learnt by the model. They can then be used to predict.
"""

np.random.seed(1)
costs = [] # keep track of cost

# Parameters initialization.
### START CODE HERE ###
parameters = initialize_parameters_deep(layers_dims)
### END CODE HERE ###

# Loop (gradient descent)
for i in range(0, num_iterations):

# Forward propagation: [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID.
### START CODE HERE ### (≈ 1 line of code)
AL, caches = L_model_forward(X, parameters)
### END CODE HERE ###

# Compute cost.
### START CODE HERE ### (≈ 1 line of code)
cost = compute_cost(AL, Y)
### END CODE HERE ###

# Backward propagation.
### START CODE HERE ### (≈ 1 line of code)
grads = L_model_backward(AL, Y, caches)
### END CODE HERE ###

# Update parameters.
### START CODE HERE ### (≈ 1 line of code)
parameters = update_parameters(parameters, grads, learning_rate)
### END CODE HERE ###

# Print the cost every 100 training example
if print_cost and i % 100 == 0:
print ("Cost after iteration %i: %f" %(i, cost))
if print_cost and i % 100 == 0:
costs.append(cost)

# plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()

return parameters


def predict(X, y, parameters):
"""
This function is used to predict the results of a L-layer neural network.

Arguments:
X -- data set of examples you would like to label
parameters -- parameters of the trained model

Returns:
p -- predictions for the given dataset X
"""

m = X.shape[1]
n = len(parameters) // 2 # number of layers in the neural network
p = np.zeros((1,m))

# Forward propagation
probas, caches = L_model_forward(X, parameters)


# convert probas to 0/1 predictions
for i in range(0, probas.shape[1]):
if probas[0,i] > 0.5:
p[0,i] = 1
else:
p[0,i] = 0

#print results
#print ("predictions: " + str(p))
#print ("true labels: " + str(y))
print("Accuracy: " + str(np.sum((p == y)/m)))

return p


train_x_orig, train_y, test_x_orig, test_y, classes = load_data()
# Reshape the training and test examples
train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T # The "-1" makes reshape flatten the remaining dimensions
test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T
# Standardize data to have feature values between 0 and 1.
train_x = train_x_flatten/255.
test_x = test_x_flatten/255.
layers_dims = [12288, 20, 7, 5, 1]

parameters = L_layer_model(train_x, train_y, layers_dims, learning_rate = 0.0075, num_iterations = 2500, print_cost = True)
predictions_train = predict(train_x, train_y, parameters)
pred_test = predict(test_x, test_y, parameters)

推荐阅读
  • vue使用
    关键词: ... [详细]
  • 基于PgpoolII的PostgreSQL集群安装与配置教程
    本文介绍了基于PgpoolII的PostgreSQL集群的安装与配置教程。Pgpool-II是一个位于PostgreSQL服务器和PostgreSQL数据库客户端之间的中间件,提供了连接池、复制、负载均衡、缓存、看门狗、限制链接等功能,可以用于搭建高可用的PostgreSQL集群。文章详细介绍了通过yum安装Pgpool-II的步骤,并提供了相关的官方参考地址。 ... [详细]
  • PHP图片截取方法及应用实例
    本文介绍了使用PHP动态切割JPEG图片的方法,并提供了应用实例,包括截取视频图、提取文章内容中的图片地址、裁切图片等问题。详细介绍了相关的PHP函数和参数的使用,以及图片切割的具体步骤。同时,还提供了一些注意事项和优化建议。通过本文的学习,读者可以掌握PHP图片截取的技巧,实现自己的需求。 ... [详细]
  • javascript  – 概述在Firefox上无法正常工作
    我试图提出一些自定义大纲,以达到一些Web可访问性建议.但我不能用Firefox制作.这就是它在Chrome上的外观:而那个图标实际上是一个锚点.在Firefox上,它只概述了整个 ... [详细]
  • 计算机存储系统的层次结构及其优势
    本文介绍了计算机存储系统的层次结构,包括高速缓存、主存储器和辅助存储器三个层次。通过分层存储数据可以提高程序的执行效率。计算机存储系统的层次结构将各种不同存储容量、存取速度和价格的存储器有机组合成整体,形成可寻址存储空间比主存储器空间大得多的存储整体。由于辅助存储器容量大、价格低,使得整体存储系统的平均价格降低。同时,高速缓存的存取速度可以和CPU的工作速度相匹配,进一步提高程序执行效率。 ... [详细]
  • 展开全部下面的代码是创建一个立方体Thisexamplescreatesanddisplaysasimplebox.#Thefirstlineloadstheinit_disp ... [详细]
  • 不同优化算法的比较分析及实验验证
    本文介绍了神经网络优化中常用的优化方法,包括学习率调整和梯度估计修正,并通过实验验证了不同优化算法的效果。实验结果表明,Adam算法在综合考虑学习率调整和梯度估计修正方面表现较好。该研究对于优化神经网络的训练过程具有指导意义。 ... [详细]
  • 个人学习使用:谨慎参考1Client类importcom.thoughtworks.gauge.Step;importcom.thoughtworks.gauge.T ... [详细]
  • 本文介绍了机器学习手册中关于日期和时区操作的重要性以及其在实际应用中的作用。文章以一个故事为背景,描述了学童们面对老先生的教导时的反应,以及上官如在这个过程中的表现。同时,文章也提到了顾慎为对上官如的恨意以及他们之间的矛盾源于早年的结局。最后,文章强调了日期和时区操作在机器学习中的重要性,并指出了其在实际应用中的作用和意义。 ... [详细]
  • Postgresql备份和恢复的方法及命令行操作步骤
    本文介绍了使用Postgresql进行备份和恢复的方法及命令行操作步骤。通过使用pg_dump命令进行备份,pg_restore命令进行恢复,并设置-h localhost选项,可以完成数据的备份和恢复操作。此外,本文还提供了参考链接以获取更多详细信息。 ... [详细]
  • 本文介绍了使用Spark实现低配版高斯朴素贝叶斯模型的原因和原理。随着数据量的增大,单机上运行高斯朴素贝叶斯模型会变得很慢,因此考虑使用Spark来加速运行。然而,Spark的MLlib并没有实现高斯朴素贝叶斯模型,因此需要自己动手实现。文章还介绍了朴素贝叶斯的原理和公式,并对具有多个特征和类别的模型进行了讨论。最后,作者总结了实现低配版高斯朴素贝叶斯模型的步骤。 ... [详细]
  • Todayatworksomeonetriedtoconvincemethat:今天在工作中有人试图说服我:{$obj->getTableInfo()}isfine ... [详细]
  • Spring源码解密之默认标签的解析方式分析
    本文分析了Spring源码解密中默认标签的解析方式。通过对命名空间的判断,区分默认命名空间和自定义命名空间,并采用不同的解析方式。其中,bean标签的解析最为复杂和重要。 ... [详细]
  • 推荐系统遇上深度学习(十七)详解推荐系统中的常用评测指标
    原创:石晓文小小挖掘机2018-06-18笔者是一个痴迷于挖掘数据中的价值的学习人,希望在平日的工作学习中,挖掘数据的价值, ... [详细]
  • Python瓦片图下载、合并、绘图、标记的代码示例
    本文提供了Python瓦片图下载、合并、绘图、标记的代码示例,包括下载代码、多线程下载、图像处理等功能。通过参考geoserver,使用PIL、cv2、numpy、gdal、osr等库实现了瓦片图的下载、合并、绘图和标记功能。代码示例详细介绍了各个功能的实现方法,供读者参考使用。 ... [详细]
author-avatar
不分手得恋爱假的_457
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有