热门标签 | HotTags
当前位置:  开发笔记 > 数据库 > 正文

悲观锁和乐观锁的比较和使用

悲观锁(PessimisticLock)顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,

悲观锁(Pessimistic Lock) 顾名思义,就是 很悲观 ,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,

悲观锁(Pessimistic Lock)

顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。

我们认为系统中的并发更新会非常频繁,并且事务失败了以后重来的开销很大,这样以来,我们就需要采用真正意义上的锁来进行实现。悲观锁的基本思想就是每次一个事务读取某一条记录后,就会把这条记录锁住,这样其它的事务要想更新,必须等以前的事务提交或者回滚解除锁。

实现方式:

大多在数据库层面实现加锁操作,JDBC方式:在JDBC中使用悲观锁,需要使用select for update语句,e.g.

Select * from Account 
where ...(where condition).. for update

乐观锁(Optimistic Lock)

顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库如果提供类似于write_condition机制的其实都是提供的乐观锁。

我们认为系统中的事务并发更新不会很频繁,即使冲突了也没事,大不了重新再来一次。它的基本思想就是每次提交一个事务更新时,我们想看看要修改的东西从上次读取以后有没有被其它事务修改过,如果修改过,那么更新就会失败。

实现方式:

大多是基于数据版本(Version)记录机制实现,何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表增加一个 “version” 字段来实现。

读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提 交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据 版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。
假如系统中有一个Account的实体类,我们在Account中多加一个version字段,那么我们JDBC Sql语句将如下写:
e.g.

Select a.version....from Account as a 
where (where condition..)

Update Account set version = version+1.....(another field) 
where version =?...(another contidition)

这样以来我们就可以通过更新结果的行数来进行判断,如果更新结果的行数为0,那么说明实体从加载以来已经被其它事务更改了,所以就抛出自定义的乐观锁定异常。具体实例如下:

int rowsUpdated = statement.executeUpdate(sql);
if (rowsUpdated ==0 ) {
    throws new OptimisticLockingFailureException();
}

悲观锁的实现

Synchronized互斥锁属于悲观锁,它有一个明显的缺点,它不管数据存不存在竞争都加锁,随着并发量增加,且如果锁的时间比较长,其性能开销将会变得很大。有没有办法解决这个问题?答案就是基于冲突检测的乐观锁。这种模式下,已经没有所谓的锁概念了,每条线程都直接先去执行操作,计算完成后检测是否与其他线程存在共享数据竞争,如果没有则让此操作成功,如果存在共享数据竞争则可能不断地重新执行操作和检测,直到成功为止,这种叫做CAS自旋

Java里的CompareAndSet(CAS)

以AtomicInteger的incrementAndGet的实现为例:

incrementAndGet的实现
    public final int incrementAndGet() {
        for (;;) {
            int current = get();
            int next = current + 1;
            if (compareAndSet(current, next))
                return next;
        }
    }

首先可以看到他是通过一个无限循环(spin)直到increment成功为止。

循环的内容是:

  1. 取得当前值
  2. 计算+1后的值
  3. 如果当前值还有效(没有被)的话设置那个+1后的值
  4. 如果设置没成功(当前值已经无效了即被别的线程改过了), 再从1开始。
compareAndSet的实现
public final boolean compareAndSet(int expect, int update) {
    return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}

直接调用的是UnSafe这个类的compareAndSwapInt方法,全称是sun.misc.Unsafe。这个类是Oracle(Sun)提供的实现,可能在别的公司的JDK里就不是这个类了。

compareAndSwapInt的实现
    /**
     * Atomically update Java variable to x if it is currently
     * holding expected.
     * @return true if successful
     */
    public final native boolean compareAndSwapInt(Object o, long offset, int expected, int x);

此方法不是Java实现的,而是通过JNI调用操作系统的原生程序,涉及到CPU原子操作,现在几乎所有的CPU指令都支持CAS的原子操作,X86下对应的是CMPXCHG汇编指令。

出于好奇,查看了下CAS原子操作的代码描述:

int compare_and_swap(int* reg, int oldval, int newval) {
    ATOMIC();
    int old_reg_val = *reg;
    if (old_reg_val == oldval)
    *reg = newval;
    END_ATOMIC();
    return old_reg_val;
}

也就是检查内存*reg里的值是不是oldval,如果是的话,则对其赋值newval。上面的代码总是返回old_reg_value,调用者如果需要知道是否更新成功还需要做进一步判断,为了方便,它可以变种为直接返回是否更新成功,如下:

bool compare_and_swap (int *accum, int *dest, int newval)
{
    if ( *accum == *dest ) {
        *dest = newval;
        return true;
    }
    return false;
}

两种锁的比较

两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下,即冲突真的很少发生的时候,这样可以省去了锁的开销,加大了系统的整个吞吐量。但如果经常产生冲突,上层应用会不断的进行retry,这样反倒是降低了性能,所以这种情况下用悲观锁就比较合适。

推荐阅读
author-avatar
手机用户2702936363
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有