热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

bzoj4554【TJOI2016&HEOI2016】游戏

4554:[Tjoi2016&Heoi2016]游戏

4554: [Tjoi2016&Heoi2016]游戏

Time Limit: 20 Sec  Memory Limit: 128 MB
Submit: 266  Solved: 167
[Submit][Status][Discuss]

Description

在2016年,佳缘姐姐喜欢上了一款游戏,叫做泡泡堂。简单的说,这个游戏就是在一张地图上放上若干个炸弹,看
是否能炸到对手,或者躲开对手的炸弹。在玩游戏的过程中,小H想到了这样一个问题:当给定一张地图,在这张
地图上最多能放上多少个炸弹能使得任意两个炸弹之间不会互相炸到。炸弹能炸到的范围是该炸弹所在的一行和一
列,炸弹的威力可以穿透软石头,但是不能穿透硬石头。给定一张n*m的网格地图:其中*代表空地,炸弹的威力可
以穿透,可以在空地上放置一枚炸弹。x代表软石头,炸弹的威力可以穿透,不能在此放置炸弹。#代表硬石头,炸
弹的威力是不能穿透的,不能在此放置炸弹。例如:给出1*4的网格地图*xx*,这个地图上最多只能放置一个炸弹
。给出另一个1*4的网格地图*x#*,这个地图最多能放置两个炸弹。现在小H任意给出一张n*m的网格地图,问你最
多能放置多少炸弹

Input

第一行输入两个正整数n,m,n表示地图的行数,m表示地图的列数。1≤n,m≤50。接下来输入n行m列个字符,代表网
格地图。*的个数不超过n*m个

Output

输出一个整数a,表示最多能放置炸弹的个数

Sample Input

4 4
#???
?#??
??#?
xxx#

Sample Output

5




二分图最大匹配

如果没有硬石头,是一个很经典的二分图模型,对于每一个空地(x,y),连边x→y,然后计算最大匹配即为答案。

考虑硬石头的影响,相当于将一行拆成了几个互不干扰的部分,所以我们将一行拆分成几个部分,分别对应不同的编号,然后建图算最大匹配。




#include
#include
#include
#include
#include
#include
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define N 55
#define M 3000
using namespace std;
int n,m,nx,ny,ans,cnt;
int x[N][N],y[N][N],head[M],f[M];
char s[N][N];
bool vst[M];
struct edge{int next,to;}e[M];
inline void add_edge(int x,int y)
{
	e[++cnt]=(edge){head[x],y};
	head[x]=cnt;
}
bool dfs(int x)
{
	for(int i=head[x];i;i=e[i].next)
	{
		int y=e[i].to;
		if (vst[y]) continue;
		vst[y]=1;
		if (!f[y]||dfs(f[y])){f[y]=x;return true;}
	}
	return false;
}
int main()
{
	scanf("%d%d",&n,&m);
	F(i,1,n) scanf("%s",s[i]+1);
	F(i,1,n) F(j,1,m) x[i][j]=(j==1||s[i][j]==&#39;#&#39;)?++nx:nx;
	F(j,1,m) F(i,1,n) y[i][j]=(i==1||s[i][j]==&#39;#&#39;)?++ny:ny;
	F(i,1,n) F(j,1,m) if (s[i][j]==&#39;*&#39;) add_edge(x[i][j],y[i][j]);
	F(i,1,nx)
	{
		memset(vst,0,sizeof(vst));
		if (dfs(i)) ans++;
	}
	printf("%d\n",ans);
	return 0;
}


bzoj4554【TJOI2016&HEOI2016】游戏


推荐阅读
  • 猜字母游戏
    猜字母游戏猜字母游戏——设计数据结构猜字母游戏——设计程序结构猜字母游戏——实现字母生成方法猜字母游戏——实现字母检测方法猜字母游戏——实现主方法1猜字母游戏——设计数据结构1.1 ... [详细]
  • 动态规划算法的基本步骤及最长递增子序列问题详解
    本文详细介绍了动态规划算法的基本步骤,包括划分阶段、选择状态、决策和状态转移方程,并以最长递增子序列问题为例进行了详细解析。动态规划算法的有效性依赖于问题本身所具有的最优子结构性质和子问题重叠性质。通过将子问题的解保存在一个表中,在以后尽可能多地利用这些子问题的解,从而提高算法的效率。 ... [详细]
  • 本文介绍了使用Java实现大数乘法的分治算法,包括输入数据的处理、普通大数乘法的结果和Karatsuba大数乘法的结果。通过改变long类型可以适应不同范围的大数乘法计算。 ... [详细]
  • HDU 2372 El Dorado(DP)的最长上升子序列长度求解方法
    本文介绍了解决HDU 2372 El Dorado问题的一种动态规划方法,通过循环k的方式求解最长上升子序列的长度。具体实现过程包括初始化dp数组、读取数列、计算最长上升子序列长度等步骤。 ... [详细]
  • 本文介绍了指针的概念以及在函数调用时使用指针作为参数的情况。指针存放的是变量的地址,通过指针可以修改指针所指的变量的值。然而,如果想要修改指针的指向,就需要使用指针的引用。文章还通过一个简单的示例代码解释了指针的引用的使用方法,并思考了在修改指针的指向后,取指针的输出结果。 ... [详细]
  • 本文讨论了如何优化解决hdu 1003 java题目的动态规划方法,通过分析加法规则和最大和的性质,提出了一种优化的思路。具体方法是,当从1加到n为负时,即sum(1,n)sum(n,s),可以继续加法计算。同时,还考虑了两种特殊情况:都是负数的情况和有0的情况。最后,通过使用Scanner类来获取输入数据。 ... [详细]
  • 本文介绍了OC学习笔记中的@property和@synthesize,包括属性的定义和合成的使用方法。通过示例代码详细讲解了@property和@synthesize的作用和用法。 ... [详细]
  • 《数据结构》学习笔记3——串匹配算法性能评估
    本文主要讨论串匹配算法的性能评估,包括模式匹配、字符种类数量、算法复杂度等内容。通过借助C++中的头文件和库,可以实现对串的匹配操作。其中蛮力算法的复杂度为O(m*n),通过随机取出长度为m的子串作为模式P,在文本T中进行匹配,统计平均复杂度。对于成功和失败的匹配分别进行测试,分析其平均复杂度。详情请参考相关学习资源。 ... [详细]
  • 高质量SQL书写的30条建议
    本文提供了30条关于优化SQL的建议,包括避免使用select *,使用具体字段,以及使用limit 1等。这些建议是基于实际开发经验总结出来的,旨在帮助读者优化SQL查询。 ... [详细]
  • 本文介绍了一个题目的解法,通过二分答案来解决问题,但困难在于如何进行检查。文章提供了一种逃逸方式,通过移动最慢的宿管来锁门时跑到更居中的位置,从而使所有合格的寝室都居中。文章还提到可以分开判断两边的情况,并使用前缀和的方式来求出在任意时刻能够到达宿管即将锁门的寝室的人数。最后,文章提到可以改成O(n)的直接枚举来解决问题。 ... [详细]
  • 本文介绍了一种解析GRE报文长度的方法,通过分析GRE报文头中的标志位来计算报文长度。具体实现步骤包括获取GRE报文头指针、提取标志位、计算报文长度等。该方法可以帮助用户准确地获取GRE报文的长度信息。 ... [详细]
  • VScode格式化文档换行或不换行的设置方法
    本文介绍了在VScode中设置格式化文档换行或不换行的方法,包括使用插件和修改settings.json文件的内容。详细步骤为:找到settings.json文件,将其中的代码替换为指定的代码。 ... [详细]
  • 本文介绍了C#中数据集DataSet对象的使用及相关方法详解,包括DataSet对象的概述、与数据关系对象的互联、Rows集合和Columns集合的组成,以及DataSet对象常用的方法之一——Merge方法的使用。通过本文的阅读,读者可以了解到DataSet对象在C#中的重要性和使用方法。 ... [详细]
  • 本文介绍了如何在给定的有序字符序列中插入新字符,并保持序列的有序性。通过示例代码演示了插入过程,以及插入后的字符序列。 ... [详细]
  • c语言\n不换行,c语言printf不换行
    本文目录一览:1、C语言不换行输入2、c语言的 ... [详细]
author-avatar
北辰孤星123
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有