热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

预训练新范式提示学习(Prompttuning,Prefixtuning,Ptuning,PPT,SPoT)

「PromptTuning也许会是深度学习时代的FeatureEngineering问题,如何给各大任务设计合理的Prompts将会是很有意思的科学问题」–刘知远虽然

「Prompt Tuning也许会是深度学习时代的Feature Engineering问题,如何给各大任务设计合理的Prompts将会是很有意思的科学问题」–刘知远

虽然博主以前也看到了基于 Prompt-tuning 可以让GPT-3处理各种类型的任务,甚至拥有直接处理零样本和小样本学习能力。也整理过GPT,OpenAI CLIP,DALL-E 这些文章。但但但,没想到这个领域冲的好快,新范式、综述和应用都层出不穷,并且看到小伙伴的应用实验效果奇佳。便想重新整理一些文章,再重新认识一下Prompt-tuning!

在这里插入图片描述
GPT-3(Language Models are Few shot Learners)
众所周知GPT-3的优势在于它超级大大大大 ,可以针对特定任务来进行微调,即核心理念为:将所有自然语言处理的任务转换为语言模型任务。

所有任务都可以被统一建模,任务描述与任务输入视为语言模型的历史上下文,而输出则为语言模型需要预测的未来信息。即转变问题为根据文本的走向来 " 搞清楚 " 它们应该做什么事情,通过给模型一些提示(prompt),来让它根据任务直接学习。这种方法也被称为情境学习(in-context learning)或提示(prompting)。

Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing
然后直接来看大佬关于Prompt的综述。NLP技术的发展可分为4个阶段/范式,如下图。

  • 全监督学习(非神经网络)。仅在目标任务的输入输出样本数据集上训练特定任务模型,其严重依赖特征工程。
  • 全监督学习(神经网络)。使得特征学习与模型训练相结合,于是研究重点转向了架构工程,即通过设计一个网络架构(如CNN,RNN,Transformer)能够学习数据特征。
  • Pre-train,Fine-tune。先在大数据集上预训练,再根据特定任务对模型进行微调,以适应于不同的下游任务。在这种范式下,研究重点转向了目标工程,设计在预训练和微调阶段使用的训练目标(损失函数)。
  • Pre-train,Prompt,Predict。无需要fine-tune,让预训练模型直接适应下游任务。方便省事,不需要每个任务每套参数,突破数据约束。

在这里插入图片描述
具体“Prompt”的做法是,将人为的规则给到预训练模型,使模型可以更好地理解人的指令的一项技术,以便更好地利用预训练模型。例如,在文本情感分类任务中,输入为"I love this movie.",希望输出的是"positive/negative"中的一个标签。那么可以设置一个Prompt,形如:“The movie is ___”,然后让模型用来表示情感状态的答案(label),如positive/negative,甚至更细粒度一些的“fantastic”、“boring”等,将空补全作为输出。

Fine-tune和Prompt的区别?
prompting 更加依赖先验,而 fine-tuning 更加依赖后验。

  • Fine-tuning中:是预训练语言模型“迁就“各种下游任务。具体体现就是通过引入各种辅助任务loss,将其添加到预训练模型中,然后继续pre-training,以便让其更加适配下游任务,这个过程中,预训练语言模型做出了更多的牺牲。
  • Prompting中,是各种下游任务“迁就“预训练语言模型。具体体现也是上面介绍的,我们需要对不同任务进行重构,使得它达到适配预训练语言模型的效果,这个过程中,是下游任务做出了更多的牺牲。

这种方法的优点是给定一组合适的 prompt,以完全无监督的方式训练的单个 LM 就能够用于解决大量任务。然而该方法也存在一个问题——这种方法引入了 prompt 挖掘工程的必要性,即需要找出最合适的 prompt 来让 LM 解决面临的任务,即怎么做Prompt Engineering。

Fine-tune和Prompt的性能?
Prompt当然参数量要小很多啦。如下图是对于T5的两者对比图。

  • Fine-tune需要为每个下游任务都存下整个预训练模型的副本,并且推理必须在单独的批次中执行。
  • Prompt只需要为每个任务存储一个特定于下游任务的小单元,并使用原始的预先训练过的模型启用混合任务推理即可。

Fine-tune模型的每个副本都需要110亿个参数。而Prompt每个任务只需要20480个参数——减少超过5个数量级。
在这里插入图片描述

Prompt Engineering
主要目标是设计Prompt。比如 Overall it was a [z] movie,[z]是需要模型进行填充的空位,[z]的位置和数量决定了Prompt的类型。回顾一下CLIP就是使用的“A photo of a [z]”的prompt。

  • cloze prompt([z]在句中)。适合使用掩码 (Mask) LM 解决的任务。
  • prefix prompt([z]在句末)。适合有关生成的任务或使用标准自回归 LM 解决的任务,因为它们与模型从左到右的性质刚好吻合。

对于一些涉及多个输入的任务例如文本对分类,prompt 模板则必须包含至少两个输入的空间。人工设计模版或者自动化搜索模版一般是常用的方式。

在这里插入图片描述
Answer Engineering
与 prompt 工程相反,answer 工程的目的是搜索一个 answer 空间 Z 和一个到原始输出 Y 的映射,从而得到更细粒度的预测模型。比如把纯“positive”或“negative”的标签转变成选择恰当的词汇填空如“fantastic”,使情感分类任务转变为语言模型构建任务。下图是一些可参考的模版,当然此后的一些新方法都是想通过自动构建模版,以进一步释放语言模型潜能。

在这里插入图片描述
paper:https://arxiv.org/abs/2107.13586

在这里插入图片描述
Multi-prompt learning
多个prompt往往能提高效果,常见的集成方式如上图:

  • Ensemble。多个prompt,每个prompt都按照单prompt的方法并行进行,然后再把最终的结果汇总,可以通过加权或者投票的方式汇总多个单prompt的方法的结果。
  • Augmentation。增强的方式其实就是找一个跟当前问题相似的case,然后将这个case跟当前输入x‘一起输入,这种模型就可以根据那个case对x‘做出更精准的预测了。
  • Composition。同时利用多个prompt构建prompt函数,每个prompt负责一个子任务,把多个prompt的内容融合到一起,同时进行多个子任务的预测。例如关系抽取任务,有的prompt负责实体识别,有的prompt负责判断实体间的关系。
  • Decomposition。对于有多个预测值的任务,将原始的任务拆分程多个子任务,引入多个prompt,分别处理子任务,彼此隔离。也就是把多个预测值的任务拆分程多个单prompt任务去分别处理。

为什么Prompt会更有效?
实际上,prompt 可以看做是对预训练语言模型中已经记忆的知识的一种检索方式,由于 prompt 任务形式就是预训练任务,所以相比于 fine-tuning,当使用 prompt 形式向模型中输入样本时,预测时得到了“提示”,因此所需使用到的信息量是更多的。因为要用到更多的信息量,所以样本的类别分布在 prompt 视角之下都是稀疏的,这应该也是 prompt 在 few-shot 上效果显著的原因。

在这里插入图片描述
Prefix-Tuning: Optimizing Continuous Prompts for Generation
之前的工作如Prompting主要是人工设计模版或者自动化搜索模版(如上一篇综述所展示了很多模版)来进行预训练的,但人工设计的未知性比较影响模型性能+自动化搜索成本较高,为什么不从离散tokens转向连续的“soft prompt”呢?

因此prefix-tuning 的主要贡献是提出任务特定的trainable前缀prefix,这样直接为不同任务保存不同的前缀即可。如上图的下方,只需要不同任务设置不同的Prefix即可,因此实现上只需要存储一个大型transformer模型和多个学习的任务特定的prefix参数。

基于prompting方法的直觉,作者认为具有适当的上下文可以在不改变参数的情况下来引导LM。因此作者给模型若干的字词作为提示,比如想让模型生成“Obama”,那可以在其常见的搭配前加上上下文(例如abama的名字Barack),那么LM就会把更高的可能性分配给想要的单词,就能自动生成一个模版。符号化表示可以有两种形式:

  • 对于自回归模型,加入前缀后的模型输入表示:z=[PREFIX;x;y]z=[PREFIX;x;y]z=[PREFIX;x;y]
  • 或者为编码器和编码器都添加prefix:z=[PREFIX;x;PREFIX′;y]z=[PREFIX;x;PREFIX';y]z=[PREFIX;x;PREFIX;y]

在这里插入图片描述
然后其他的不变,语言模型参数固定,只更新前缀参数。这种连续性的生成方法在后续的P-tuning中也持续被探索。

paper:https://arxiv.org/abs/2101.00190
code:https://github.com/XiangLi1999/PrefixTuning

GPT Understands, Too
P-tuning V1的动机和prefix-tuning是类似的,也是探索可学习的可微模版,主要贡献是首次提出了用连续空间搜索的 embedding 做 prompt。如这篇清华文章的题目“GPT Understands, Too”,代表着它的表现想颠覆一直以来“GPT只能做生成,不能做理解”的结论。

首先关于“什么是模版”,直观上模版就是由自然语言构成的前缀/后缀。比如人工定义的话会变成类似「The capital of Britain is [MASK]」这种形式,然后也可是「Britain’ capital is [MASK]」或者「[MASK] is the capital of Britain 」等等。通过这些模版才能使得下游任务跟预训练任务一致,这样才能更加充分地利用原始预训练模型。

而P-tuning的目标是:不关心模版长什么样, 只需要知道模版由哪些 token 组成,该插入到哪里,插入后能不能完成我们的下游任务,输出的候选空间是什么就可以了。即不关心模版的“自然语言”要求,它只是为了更好地实现“一致性”但不是必须的。因此P-tuning 的做法是用上下文 x (「Britain」)、目标 y(「[MASK]」) 和去组合成一个prompt模版 t (「The capital of … is …」)。如下图,
在这里插入图片描述
上下文指蓝色的“Britain”,目标是红色的“[MASK]”,橘色的区域是想生成的模版。左边的图a是离散化搜索的做法,不一定是最优的。右边的是P-tuning,它通过预训练的嵌入层将一组离散输入 token (即pseudo prompts)映射到embedding,然后结合(capital,Britain)生成得到结果,再优化生成的encoder部分。这种方法可以找到更好的连续 prompt,并通过下游损失函数对连续 prompt 进行优化。

离散 vs 连续
最早研究自动模版的工作,有些是挖掘实体关系,有些需要大量样本进行基于梯度搜索(如autoprompt),在离散空间下搜索的自然语言模版。也有梯度粗筛+代入模版精筛等等。而连续的Prefix-Tuning和P-tuning 放弃了“模版由自然语言构成”这一要求,从而将其变成了可以简单梯度下降求解的连续参数问题,效果还更好。可能prompt的关键在于它是怎么用的,不在于它由什么构成。

paper:https://arxiv.org/abs/2103.10385
code:https://github.com/THUDM/P-tuning

P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
P-tuning在一些复杂的自然语言理解NLU任务上效果很差(任务不通用)+预训练的参数量不能小(规模不通用)。因此V2版本主要是基于P-tuning和Prefix-tuning,引入Deep Prompt Encoding和Multi-task Learning等策略进行优化的。直接看模型图如下,左边是p-tuning的做法,右边是v2的改进。
在这里插入图片描述
对比起来主要的变动有:

  • Deep Prompt Encoding:采用 Prefix-tuning 的做法,在输入前面的每层加入可微调的参数。
  • 无重参数化编码器:对pseudo token,不再使用重参数化进行表征(如用于 prefix-tunning 的 MLP 和用于 P-tuning 的 LSTM),且不再替换pre-trained model word embedding,取而代之的是直接对pseudo token对应的深层模型的参数进行微调。
  • Multi-task learning:对于pseudo token的continous prompt,随机初始化比较难以优化,因此采用multi-task方法同时训练多个数据集,prefix continuous prompt共享。
  • 回到CLS:可以在[CLS]部分输出sentence-level class,以及每个token位置上输出token-level class,可以解决一些没有语义标签的问题。

paper:https://arxiv.org/abs/2110.07602
code:https://github.com/thudm/p-tuning-v2

在这里插入图片描述
OpenPrompt 工具包
Pipeline工具来了!先放link:

  • https://github.com/thunlp/OpenPrompt

PPT: Pre-trained Prompt Tuning for Few-shot Learning
虽然Prompt-tuning非常有效,其在较小预训练模型上、在Few-shot的场景下表现一般,且相比于Model-tuning,Prompt-tuning的收敛速度较慢,需要训练更多的步数。虽然可以通过初始化soft prompts解决,那既然如此,为什么不对prompts也进行预训练呢!

这篇文章提出PPT,对prompt的预训练方法是利用把所有的分类任务分成三类:单句分类任务、句对分类任务和多项选择分类任务。然后对每一类都设计了一个自监督预训练任务,然后用预训练任务的prompts去初始化下游任务的prompts。

  • https://arxiv.org/abs/2109.04332

SPoT: Better Frozen Model Adaptation through Soft Prompt Transfer
SPOT用一个或多个源任务训练的prompts来初始化目标任务的prompts。比较重要的是,实验结论中有如下几种方式组合比较好,

  • Best of top-k: 用top-k源任务的prompts逐个去初始化,然后选最好。
  • Top-k weighted average: 用top-k prompts的线性加权去初始化,权重是各个任务与目标任务的prompts的相似度。
  • Top-k multi-task mixture: 混合top-k源任务的数据进行训练,再用最后得到的prompt去初始化。

https://arxiv.org/abs/2110.07904

On Transferability of Prompt Tuning for Natural Language Understanding
补一篇衡量prompt相似度的文章,细节待补,先上结论:prompt的迁移性很重要,但并不是相似度越高就越好。
https://arxiv.org/abs/2111.06719


下一篇博文将继续整理Prompt在多模态预训练中的应用,

  • 多模态预训练中的Prompt(MANTIS,ActionCLIP,CPT,CoOp)
  • 多模态预训练中的Prompt(ALPRO,Frozen)

推荐阅读
  • WSDm问题语义匹配分类算法,Sentence Embedding实现,自然语言处理
    优化版后的网络架构图:参考文献:https:arxiv.orgpdf1808.08762.pdf实现代码(自己修改了一部分, ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • Android程序员面试宝典自定义控件一分钟实现贴纸功能一分钟实现TextView高亮一分钟实现新手引导页一分钟实现ViewPager卡片一分钟实现加载对话框一分钟实现轮播图一分钟 ... [详细]
  • 本文介绍了九度OnlineJudge中的1002题目“Grading”的解决方法。该题目要求设计一个公平的评分过程,将每个考题分配给3个独立的专家,如果他们的评分不一致,则需要请一位裁判做出最终决定。文章详细描述了评分规则,并给出了解决该问题的程序。 ... [详细]
  • 本文讨论了clone的fork与pthread_create创建线程的不同之处。进程是一个指令执行流及其执行环境,其执行环境是一个系统资源的集合。在调用系统调用fork创建一个进程时,子进程只是完全复制父进程的资源,这样得到的子进程独立于父进程,具有良好的并发性。但是二者之间的通讯需要通过专门的通讯机制,另外通过fork创建子进程系统开销很大。因此,在某些情况下,使用clone或pthread_create创建线程可能更加高效。 ... [详细]
  • 本文介绍了机器学习手册中关于日期和时区操作的重要性以及其在实际应用中的作用。文章以一个故事为背景,描述了学童们面对老先生的教导时的反应,以及上官如在这个过程中的表现。同时,文章也提到了顾慎为对上官如的恨意以及他们之间的矛盾源于早年的结局。最后,文章强调了日期和时区操作在机器学习中的重要性,并指出了其在实际应用中的作用和意义。 ... [详细]
  • 浏览器中的异常检测算法及其在深度学习中的应用
    本文介绍了在浏览器中进行异常检测的算法,包括统计学方法和机器学习方法,并探讨了异常检测在深度学习中的应用。异常检测在金融领域的信用卡欺诈、企业安全领域的非法入侵、IT运维中的设备维护时间点预测等方面具有广泛的应用。通过使用TensorFlow.js进行异常检测,可以实现对单变量和多变量异常的检测。统计学方法通过估计数据的分布概率来计算数据点的异常概率,而机器学习方法则通过训练数据来建立异常检测模型。 ... [详细]
  • SpringMVC接收请求参数的方式总结
    本文总结了在SpringMVC开发中处理控制器参数的各种方式,包括处理使用@RequestParam注解的参数、MultipartFile类型参数和Simple类型参数的RequestParamMethodArgumentResolver,处理@RequestBody注解的参数的RequestResponseBodyMethodProcessor,以及PathVariableMapMethodArgumentResol等子类。 ... [详细]
  • 使用圣杯布局模式实现网站首页的内容布局
    本文介绍了使用圣杯布局模式实现网站首页的内容布局的方法,包括HTML部分代码和实例。同时还提供了公司新闻、最新产品、关于我们、联系我们等页面的布局示例。商品展示区包括了车里子和农家生态土鸡蛋等产品的价格信息。 ... [详细]
  • 本文介绍了Python语言程序设计中文件和数据格式化的操作,包括使用np.savetext保存文本文件,对文本文件和二进制文件进行统一的操作步骤,以及使用Numpy模块进行数据可视化编程的指南。同时还提供了一些关于Python的测试题。 ... [详细]
  • 本博文基于《Amalgamationofproteinsequence,structureandtextualinformationforimprovingprote ... [详细]
  • 概述H.323是由ITU制定的通信控制协议,用于在分组交换网中提供多媒体业务。呼叫控制是其中的重要组成部分,它可用来建立点到点的媒体会话和多点间媒体会议 ... [详细]
  • 我创建了一个新的AWSSSO(使用内部IDP作为身份源,因此不使用ActiveDirectory)。我能够登录AWSCLI、AWSGUI,但 ... [详细]
  • 必备核心算法神经网络通俗讲解
    深度学习传统算法VS人工智能算法传统算法:都是人为去计算人工智能算法:部分人为需要做的事情交由机器去做【把更多的问题简单化】IT的发展比较高端的就是A ... [详细]
  • 聊聊 中国人工智能科技产业 区域竞争力分析及趋势
    原文链接:聊聊中国人工智能科技产业区域竞争力分析及趋势最近看了一个关于国内AI的报告《中国新一代人工智能科技产业区域竞争力评价指数(2021ÿ ... [详细]
author-avatar
江西理工大学-交通091班-李吉平
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有