热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

以下哪个不是迭代算法的缺点_算法笔记|一文读懂Kmeans聚类算法

1、引言什么是聚类?我们通常说,机器学习任务可以分为两类,一类是监督学习,一类是无监督学习。监督学习:训练集有
b44be0acbd5588c1165333ab6f2592fd.png

1、引言

什么是聚类?我们通常说,机器学习任务可以分为两类,一类是监督学习,一类是无监督学习。监督学习:训练集有明确标签,监督学习就是寻找问题(又称输入、特征、自变量)与标签(又称输出、目标、因变量)之间关系的学习方式。监督学习模型又可以分为两类,分类和回归。分类模型:目标变量是离散的分类型变量;回归模型:目标变量是连续性数值型变量。无监督学习:只有数据,无标签,即训练集没有标注目标变量。常见的无监督学习算法有聚类,由计算机自己找出规律,把有相似属性的样本放在一组,每个小组也称为簇。简单来说,聚类是指根据相似数据点的属性或特征将它们分组在一起。例如,如果我们有一组人的收入和支出,我们可以将他们分为以下几类:
  • 高收入,高消费

  • 高收入,低消费

  • 低收入,低消费

  • 低收入,高消费

2、K-means聚类

聚类算法有很多,最流行的聚类算法之一是 k-means。让我们了解 k-means 算法是如何工作的,以及该算法可能达不到预期的情况。K-means有一个很著名很清晰的解析,就是牧师-村民模型。有四个牧师去郊区布道,一开始牧师们随意选了几个布道点,并且把这几个布道点的情况公告给了郊区所有的居民,于是每个居民到离自己家最近的布道点去听课。听课之后,大家觉得距离太远了,于是每个牧师统计了一下自己的课上所有的居民的地址,搬到了所有地址的中心地带,并且在海报上更新了自己的布道点的位置。牧师每一次移动不可能离所有人都更近,有的人发现A牧师移动以后自己还不如去B牧师处听课更近,于是每个居民又去了离自己最近的布道点……就这样,牧师每个礼拜更新自己的位置,居民根据自己的情况选择布道点,最终稳定了下来。根据上面这个故事,我们可以简单来概括一下K-means算法的一般步骤,K-Means聚类步骤是一个循环迭代的算法,非常简单易懂:Step1:确定类别数量K,K值人为设定,在训练数据分布范围内,随机选择K个点作为初始中心点;Step2:按照距离最小原则,把所有数据点分到距离最近的中心点所在的类中;step3:每类中有若干个观数据点,计算K个类中所有数据点的均值,作为下一次迭代的中心点;Step4:重复step2、step3步,直到收敛(每个数据点所属类别或中心点不再改变),聚类过程结束。下面我们通过一组图来直观了解一下K-means算法迭代过程:491b4254b06ffb27e4032238ae117e12.png初始状态随机生成了3个聚类中心点,然后分别计算每一个数据点对这些中心的距离,把距离最短的那个当成自己的类别。这样每个点都会对应一个中心点,可以看到聚类的并不准确,红色聚类中心太偏,没有数据点属于该类,在代码中,我们会再次随机更新这个聚类中心。0f1fe61200ad48ccdf31741e9834ddbd.png第一次迭代经过一次迭代之后,聚类中心向该类别的数据点的中心移动。f9117c78f015e3fc2772b2fdeeec3db5.png收敛状态收敛状态,聚类中心移动到每个类别数据点中心,继续迭代中心点位置也不在变化。

3、思考

(1)初始中心点怎么确定?如果我们用欧式距离评估数据点与聚类中心的距离,那么在k-means算法步骤中,相当于我们一直在寻求一种最优的分割方式,使得总平方误差(SSE)最小,即数据点与其聚类中心的欧式距离最小。在迭代过程中,从两个方面来降低SSE:第一,把样本点分到最近邻的簇中,这样会降低SSE的值;第二,用均值更新聚类中心,进一步的减小了SSE(以MSE为目标函数,求导可知最优解即为平均数,以MAE为目标函数,求导可知最优解为中位数,因此如果采用曼哈顿距离进行聚类,更新聚类中心时,我们就需要采用中位数而不是平均数更新)。这样的重复迭代、不断优化,会找到局部最优解(局部最小的SSE),如果想要找到全局最优解需要找到合理的初始聚类中心。那合理的初始中心怎么选?方法有很多,譬如先随便选个点作为第1个初始中心C1,接下来计算所有样本点与C1的距离,距离最大的被选为下一个中心C2,直到选完K个中心。这个算法叫做K-Means++,可以理解为 K-Means的改进版,它可以能有效地解决初始中心的选取问题,但无法解决离群点问题。总的来说,最好解决办法还是多尝试几次,即多设置几个不同的初始点,从中选最优,也就是具有最小SSE值的那组作为最终聚类。(2)K值怎么确定?如果K过大,样本划分就越细,每个簇的聚合程度就越高,误差平方和SSE自然就越小。所以不能单纯像选择初始点那样,用不同的K来做尝试,选择SSE最小的聚类结果对应的K值,毫无疑问,SSE最小时必然对应K的最大值。假设在我们的原始数据中,其客观存在的类别数量为M,当K值小于M时,随着K值的增大,SSE会快速下降,而当K值大于M时,随着K值增大,SSE下降幅度会减小。如下图所示,M取值事先未知,K=2开始尝试,发现K=3时,SSE大幅下降,K=4时,SSE下降幅度稍微小了点,K=5时,下降幅度迅速降低,再后面就越来越平缓。所以我们认为M取值应该为4,因此可以将K设定为4。e68a88d01dbc002c724276268bc21b7c.png这种方法叫做“手肘法”,因为SSE和K的关系图就像是手肘的形状,而肘部对应的K值就被认为是数据的真实聚类数。

4、总结

k-means 聚类概念听起来不错,它易于理解,相对容易实现,并且可以应用于很多用例中。最重要的一点是,算法复杂度不高,仅仅为O(s*n),s为迭代次数,而一般情况下,k-means算法收敛速度很快,迭代次数不超过10次,因此在数据集较大时,k-means应用起来非常方便。但也有一些缺点和局限性需要我们注意。从上文的算例来看,k-means 算法似乎运行得很好,但是,如果你仔细观察,你会发现所有创建的簇都是圆形的。这是因为聚类中心是使用平均值迭代更新的。现在,考虑下面的例子,其中点的分布不是圆形的。如果我们对这些数据使用 k-means 聚类,你认为会发生什么?它仍然试图以循环方式对数据点进行分组。那不太好!k-means 无法识别正确的分类:8c7f0f2235622596bad19e69060bd574.png因此,我们需要一种不同的方法来将数据点分配给聚类中心。因此,我们不应该再使用基于距离的模型,而是应该使用基于分布的模型。下一篇文章,我们再来看,高斯混合模型(GMM)是如何来克服K-means算法的缺点。922c0dc4122cb168e13f4a3cbe5d4a98.png



推荐阅读
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • 近年来,大数据成为互联网世界的新宠儿,被列入阿里巴巴、谷歌等公司的战略规划中,也在政府报告中频繁提及。据《大数据人才报告》显示,目前全国大数据人才仅46万,未来3-5年将出现高达150万的人才缺口。根据领英报告,数据剖析人才供应指数最低,且跳槽速度最快。中国商业结合会数据剖析专业委员会统计显示,未来中国基础性数据剖析人才缺口将高达1400万。目前BAT企业中,60%以上的招聘职位都是针对大数据人才的。 ... [详细]
  • [译]技术公司十年经验的职场生涯回顾
    本文是一位在技术公司工作十年的职场人士对自己职业生涯的总结回顾。她的职业规划与众不同,令人深思又有趣。其中涉及到的内容有机器学习、创新创业以及引用了女性主义者在TED演讲中的部分讲义。文章表达了对职业生涯的愿望和希望,认为人类有能力不断改善自己。 ... [详细]
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
  • 浏览器中的异常检测算法及其在深度学习中的应用
    本文介绍了在浏览器中进行异常检测的算法,包括统计学方法和机器学习方法,并探讨了异常检测在深度学习中的应用。异常检测在金融领域的信用卡欺诈、企业安全领域的非法入侵、IT运维中的设备维护时间点预测等方面具有广泛的应用。通过使用TensorFlow.js进行异常检测,可以实现对单变量和多变量异常的检测。统计学方法通过估计数据的分布概率来计算数据点的异常概率,而机器学习方法则通过训练数据来建立异常检测模型。 ... [详细]
  • 词袋模型的通俗介绍
    词,袋, ... [详细]
  • 本文详细介绍了商汤科技面试中涉及的CV算法面经内容,包括CornerNet的介绍与CornerPooling的解决方案、Mimic知识蒸馏的实现方式、MobileNet的特点、普通卷积和DW PW卷积的计算量推导、Residual结构的来源等。同时还讨论了在人脸关键点和检测中的mimic实现方式、pose对人脸关键点的提升作用、目标检测中可能遇到的问题以及处理检测类别冲突的方法。此外,还涉及了对机器学习的了解程度和相似度分析的问题。 ... [详细]
  • GPT-3发布,动动手指就能自动生成代码的神器来了!
    近日,OpenAI发布了最新的NLP模型GPT-3,该模型在GitHub趋势榜上名列前茅。GPT-3使用的数据集容量达到45TB,参数个数高达1750亿,训练好的模型需要700G的硬盘空间来存储。一位开发者根据GPT-3模型上线了一个名为debuid的网站,用户只需用英语描述需求,前端代码就能自动生成。这个神奇的功能让许多程序员感到惊讶。去年,OpenAI在与世界冠军OG战队的表演赛中展示了他们的强化学习模型,在限定条件下以2:0完胜人类冠军。 ... [详细]
  • 背景应用安全领域,各类攻击长久以来都危害着互联网上的应用,在web应用安全风险中,各类注入、跨站等攻击仍然占据着较前的位置。WAF(Web应用防火墙)正是为防御和阻断这类攻击而存在 ... [详细]
  • 建立分类感知器二元模型对样本数据进行分类
    本文介绍了建立分类感知器二元模型对样本数据进行分类的方法。通过建立线性模型,使用最小二乘、Logistic回归等方法进行建模,考虑到可能性的大小等因素。通过极大似然估计求得分类器的参数,使用牛顿-拉菲森迭代方法求解方程组。同时介绍了梯度上升算法和牛顿迭代的收敛速度比较。最后给出了公式法和logistic regression的实现示例。 ... [详细]
  • 数据结构与算法的重要性及基本概念、存储结构和算法分析
    数据结构与算法在编程领域中的重要性不可忽视,无论从事何种岗位,都需要掌握数据结构和算法。本文介绍了数据结构与算法的基本概念、存储结构和算法分析。其中包括线性结构、树结构、图结构、栈、队列、串、查找、排序等内容。此外,还介绍了图论算法、贪婪算法、分治算法、动态规划、随机化算法和回溯算法等高级数据结构和算法。掌握这些知识对于提高编程能力、解决问题具有重要意义。 ... [详细]
  • 前言:拿到一个案例,去分析:它该是做分类还是做回归,哪部分该做分类,哪部分该做回归,哪部分该做优化,它们的目标值分别是什么。再挑影响因素,哪些和分类有关的影响因素,哪些和回归有关的 ... [详细]
  • 本文介绍了绕过WAF的XSS检测机制的方法,包括确定payload结构、测试和混淆。同时提出了一种构建XSS payload的方法,该payload与安全机制使用的正则表达式不匹配。通过清理用户输入、转义输出、使用文档对象模型(DOM)接收器和源、实施适当的跨域资源共享(CORS)策略和其他安全策略,可以有效阻止XSS漏洞。但是,WAF或自定义过滤器仍然被广泛使用来增加安全性。本文的方法可以绕过这种安全机制,构建与正则表达式不匹配的XSS payload。 ... [详细]
  • 如何使用代理服务器进行网页抓取?
    本文介绍了如何使用代理服务器进行网页抓取,并探讨了数据驱动对竞争优势的重要性。通过网页抓取,企业可以快速获取并分析大量与需求相关的数据,从而制定营销战略。同时,网页抓取还可以帮助电子商务公司在竞争对手的网站上下载数百页的有用数据,提高销售增长和毛利率。 ... [详细]
  • 本文介绍了在Python张量流中使用make_merged_spec()方法合并设备规格对象的方法和语法,以及参数和返回值的说明,并提供了一个示例代码。 ... [详细]
author-avatar
红箭777_387
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有