热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

Tomcat使用线程池处理远程并发请求的方法

这篇文章主要介绍了Tomcat使用线程池处理远程并发请求的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

通过了解学习tomcat如何处理并发请求,了解到线程池,锁,队列,unsafe类,下面的主要代码来自

java-jre:

sun.misc.Unsafe
java.util.concurrent.ThreadPoolExecutor
java.util.concurrent.ThreadPoolExecutor.Worker
java.util.concurrent.locks.AbstractQueuedSynchronizer
java.util.concurrent.locks.AbstractQueuedLongSynchronizer
java.util.concurrent.LinkedBlockingQueue

tomcat:

org.apache.tomcat.util.net.NioEndpoint
org.apache.tomcat.util.threads.ThreadPoolExecutor
org.apache.tomcat.util.threads.TaskThreadFactory
org.apache.tomcat.util.threads.TaskQueue

ThreadPoolExecutor

是一个线程池实现类,管理线程,减少线程开销,可以用来提高任务执行效率,

构造方法中的参数有

public ThreadPoolExecutor(
 int corePoolSize,
 int maximumPoolSize,
 long keepAliveTime,
 TimeUnit unit,
 BlockingQueue workQueue,
 ThreadFactory threadFactory,
 RejectedExecutionHandler handler) {
 
}

corePoolSize 是核心线程数
maximumPoolSize 是最大线程数
keepAliveTime 非核心线程最大空闲时间(超过时间终止)
unit 时间单位
workQueue 队列,当任务过多时,先存放在队列
threadFactory 线程工厂,创建线程的工厂
handler 决绝策略,当任务数过多,队列不能再存放任务时,该如何处理,由此对象去处理。这是个接口,你可以自定义处理方式

ThreadPoolExecutor在Tomcat中http请求的应用

此线程池是tomcat用来在接收到远程请求后,将每次请求单独作为一个任务去处理,每次调用execute(Runnable)

初始化

org.apache.tomcat.util.net.NioEndpoint

NioEndpoint初始化的时候,创建了线程池

public void createExecutor() {
 internalExecutor = true;
 TaskQueue taskqueue = new TaskQueue();
 //TaskQueue无界队列,可以一直添加,因此handler 等同于无效
 TaskThreadFactory tf = new TaskThreadFactory(getName() + "-exec-", daemon, getThreadPriority());
 executor = new ThreadPoolExecutor(getMinSpareThreads(), getMaxThreads(), 60, TimeUnit.SECONDS,taskqueue, tf);
 taskqueue.setParent( (ThreadPoolExecutor) executor);
 }

在线程池创建时,调用prestartAllCoreThreads(), 初始化核心工作线程worker,并启动

public int prestartAllCoreThreads() {
 int n = 0;
 while (addWorker(null, true))
  ++n;
 return n;
 }

当addWorker 数量等于corePoolSize时,addWorker(null,ture)会返回false,停止worker工作线程的创建

提交任务到队列

每次客户端过来请求(http),就会提交一次处理任务,

worker 从队列中获取任务运行,下面是任务放入队列的逻辑代码

ThreadPoolExecutor.execute(Runnable) 提交任务:

public void execute(Runnable command) {
 if (command == null)
  throw new NullPointerException();
 
 int c = ctl.get();
 	// worker数 是否小于 核心线程数 tomcat中初始化后,一般不满足第一个条件,不会addWorker
 if (workerCountOf(c) 

workQueue.offer(command) 完成了任务的提交(在tomcat处理远程http请求时)。

workQueue.offer

TaskQueue 是 BlockingQueue 具体实现类,workQueue.offer(command)实际代码:

public boolean offer(E e) {
 if (e == null) throw new NullPointerException();
 final AtomicInteger count = this.count;
 if (count.get() == capacity)
 return false;
 int c = -1;
 Node node = new Node(e);
 final ReentrantLock putLock = this.putLock;
 putLock.lock();
 try {
 if (count.get() = 0;
}

// 添加任务到队列
/**
 * Links node at end of queue.
 *
 * @param node the node
 */
private void enqueue(Node node) {
 // assert putLock.isHeldByCurrentThread();
 // assert last.next == null;
 last = last.next = node; //链表结构 last.next = node; last = node
}

之后是worker的工作,worker在run方法中通过去getTask()获取此处提交的任务,并执行完成任务。

线程池如何处理新提交的任务

添加worker之后,提交任务,因为worker数量达到corePoolSize,任务都会将放入队列,而worker的run方法则是循环获取队列中的任务(不为空时),

worker run方法:

/** Delegates main run loop to outer runWorker */
 public void run() {
  runWorker(this);
 }

循环获取队列中的任务

runWorker(worker)方法 循环部分代码:

final void runWorker(Worker w) {
 Thread wt = Thread.currentThread();
 Runnable task = w.firstTask;
 w.firstTask = null;
 w.unlock(); // allow interrupts
 boolean completedAbruptly = true;
 try {
  while (task != null || (task = getTask()) != null) { //循环获取队列中的任务
  w.lock(); // 上锁
  try {
   // 运行前处理
   beforeExecute(wt, task);
   // 队列中的任务开始执行
   task.run();
   // 运行后处理
   afterExecute(task, thrown);
  } finally {
   task = null;
   w.completedTasks++;
   w.unlock(); // 释放锁
  }
  }
  completedAbruptly = false;
 } finally {
  processWorkerExit(w, completedAbruptly);
 }
 }

task.run()执行任务

锁运用

ThreadPoolExecutor 使用锁主要保证两件事情,
1.给队列添加任务,保证其他线程不能操作队列
2.获取队列的任务,保证其他线程不能同时操作队列

给队列添加任务上锁

public boolean offer(E e) {
 if (e == null) throw new NullPointerException();
 final AtomicInteger count = this.count;
 if (count.get() == capacity)
  return false;
 int c = -1;
 Node node = new Node(e);
 final ReentrantLock putLock = this.putLock;
 putLock.lock(); //上锁
 try {
  if (count.get() = 0;
 }

 

获取队列任务上锁

private Runnable getTask() {
 boolean timedOut = false; // Did the last poll() time out?
		// ...省略
 for (;;) {
  try {
  Runnable r = timed ?
   workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
   workQueue.take(); //获取队列中一个任务
  if (r != null)
   return r;
  timedOut = true;
  } catch (InterruptedException retry) {
  timedOut = false;
  }
 }
 }
public E take() throws InterruptedException {
 E x;
 int c = -1;
 final AtomicInteger count = this.count;
 final ReentrantLock takeLock = this.takeLock;
 takeLock.lockInterruptibly(); // 上锁
 try {
  while (count.get() == 0) {
  notEmpty.await(); //如果队列中没有任务,等待
  }
  x = dequeue();
  c = count.getAndDecrement();
  if (c > 1)
  notEmpty.signal();
 } finally {
  takeLock.unlock(); // 释放锁
 }
 if (c == capacity)
  signalNotFull();
 return x;
 }

volatile

在并发场景这个关键字修饰成员变量很常见,

主要目的公共变量在被某一个线程修改时,对其他线程可见(实时)

sun.misc.Unsafe 高并发相关类

线程池使用中,有平凡用到Unsafe类,这个类在高并发中,能做一些原子CAS操作,锁线程,释放线程等。

sun.misc.Unsafe 类是底层类,openjdk源码中有

原子操作数据

java.util.concurrent.locks.AbstractQueuedSynchronizer 类中就有保证原子操作的代码

protected final boolean compareAndSetState(int expect, int update) {
 // See below for intrinsics setup to support this
 return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
 }

对应Unsafe类的代码:

//对应的java底层,实际是native方法,对应C++代码
/**
* Atomically update Java variable to x if it is currently
* holding expected.
* @return true if successful
*/
public final native boolean compareAndSwapInt(Object o, long offset,
      int expected,
      int x);

方法的作用简单来说就是 更新一个值,保证原子性操作
当你要操作一个对象o的一个成员变量offset时,修改o.offset,
高并发下为保证准确性,你在操作o.offset的时候,读应该是正确的值,并且中间不能被别的线程修改来保证高并发的环境数据操作有效。

即 expected 期望值与内存中的值比较是一样的expected == 内存中的值 ,则更新值为 x,返回true代表修改成功

否则,期望值与内存值不同,说明值被其他线程修改过,不能更新值为x,并返回false,告诉操作者此次原子性修改失败。

阻塞和唤醒线程

public native void park(boolean isAbsolute, long time); //阻塞当前线程

线程池的worker角色循环获取队列任务,如果队列中没有任务,worker.run 还是在等待的,不会退出线程,代码中用了notEmpty.await() 中断此worker线程,放入一个等待线程队列(区别去任务队列);当有新任务需要时,再notEmpty.signal()唤醒此线程

底层分别是
unsafe.park() 阻塞当前线程
public native void park(boolean isAbsolute, long time);

unsafe.unpark() 唤醒线程
public native void unpark(Object thread);

这个操作是对应的,阻塞时,先将thread放入队列,唤醒时,从队列拿出被阻塞的线程,unsafe.unpark(thread)唤醒指定线程。

java.util.concurrent.locks.AbstractQueuedLongSynchronizer.ConditionObject 类中

通过链表存放线程信息

// 添加一个阻塞线程
private Node addConditionWaiter() {
  Node t = lastWaiter;
  // If lastWaiter is cancelled, clean out.
  if (t != null && t.waitStatus != Node.CONDITION) {
  unlinkCancelledWaiters();
  t = lastWaiter;
  }
  Node node = new Node(Thread.currentThread(), Node.CONDITION);
  if (t == null)
  firstWaiter = node;
  else
  t.nextWaiter = node;
  lastWaiter = node; //将新阻塞的线程放到链表尾部
  return node;
 }

// 拿出一个被阻塞的线程
 public final void signal() {
  if (!isHeldExclusively())
  throw new IllegalMonitorStateException();
  Node first = firstWaiter; //链表中第一个阻塞的线程
  if (first != null)
  doSignal(first);
 }

// 拿到后,唤醒此线程
final boolean transferForSignal(Node node) {
  LockSupport.unpark(node.thread);
 return true;
 }
public static void unpark(Thread thread) {
 if (thread != null)
  UNSAFE.unpark(thread);
 }

到此这篇关于Tomcat使用线程池处理远程并发请求的方法的文章就介绍到这了,更多相关Tomcat线程池处理远程并发请求内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!


推荐阅读
  • 这是原文链接:sendingformdata许多情况下,我们使用表单发送数据到服务器。服务器处理数据并返回响应给用户。这看起来很简单,但是 ... [详细]
  • 本文介绍了关于apache、phpmyadmin、mysql、php、emacs、path等知识点,以及如何搭建php环境。文章提供了详细的安装步骤和所需软件列表,希望能帮助读者解决与LAMP相关的技术问题。 ... [详细]
  • 标题: ... [详细]
  • 本文介绍了在Mac上搭建php环境后无法使用localhost连接mysql的问题,并通过将localhost替换为127.0.0.1或本机IP解决了该问题。文章解释了localhost和127.0.0.1的区别,指出了使用socket方式连接导致连接失败的原因。此外,还提供了相关链接供读者深入了解。 ... [详细]
  • 本文介绍了Web学习历程记录中关于Tomcat的基本概念和配置。首先解释了Web静态Web资源和动态Web资源的概念,以及C/S架构和B/S架构的区别。然后介绍了常见的Web服务器,包括Weblogic、WebSphere和Tomcat。接着详细讲解了Tomcat的虚拟主机、web应用和虚拟路径映射的概念和配置过程。最后简要介绍了http协议的作用。本文内容详实,适合初学者了解Tomcat的基础知识。 ... [详细]
  • Android系统移植与调试之如何修改Android设备状态条上音量加减键在横竖屏切换的时候的显示于隐藏
    本文介绍了如何修改Android设备状态条上音量加减键在横竖屏切换时的显示与隐藏。通过修改系统文件system_bar.xml实现了该功能,并分享了解决思路和经验。 ... [详细]
  • 本文介绍了在Windows环境下如何配置php+apache环境,包括下载php7和apache2.4、安装vc2015运行时环境、启动php7和apache2.4等步骤。希望对需要搭建php7环境的读者有一定的参考价值。摘要长度为169字。 ... [详细]
  • 本文介绍了一些Java开发项目管理工具及其配置教程,包括团队协同工具worktil,版本管理工具GitLab,自动化构建工具Jenkins,项目管理工具Maven和Maven私服Nexus,以及Mybatis的安装和代码自动生成工具。提供了相关链接供读者参考。 ... [详细]
  • 本文由编程笔记#小编为大家整理,主要介绍了StartingzookeeperFAILEDTOSTART相关的知识,希望对你有一定的参考价值。下载路径:https://ar ... [详细]
  • 本文介绍了在Linux下安装和配置Kafka的方法,包括安装JDK、下载和解压Kafka、配置Kafka的参数,以及配置Kafka的日志目录、服务器IP和日志存放路径等。同时还提供了单机配置部署的方法和zookeeper地址和端口的配置。通过实操成功的案例,帮助读者快速完成Kafka的安装和配置。 ... [详细]
  • mac php错误日志配置方法及错误级别修改
    本文介绍了在mac环境下配置php错误日志的方法,包括修改php.ini文件和httpd.conf文件的操作步骤。同时还介绍了如何修改错误级别,以及相应的错误级别参考链接。 ... [详细]
  • 一句话解决高并发的核心原则
    本文介绍了解决高并发的核心原则,即将用户访问请求尽量往前推,避免访问CDN、静态服务器、动态服务器、数据库和存储,从而实现高性能、高并发、高可扩展的网站架构。同时提到了Google的成功案例,以及适用于千万级别PV站和亿级PV网站的架构层次。 ... [详细]
  • 如何提高PHP编程技能及推荐高级教程
    本文介绍了如何提高PHP编程技能的方法,推荐了一些高级教程。学习任何一种编程语言都需要长期的坚持和不懈的努力,本文提醒读者要有足够的耐心和时间投入。通过实践操作学习,可以更好地理解和掌握PHP语言的特异性,特别是单引号和双引号的用法。同时,本文也指出了只走马观花看整体而不深入学习的学习方式无法真正掌握这门语言,建议读者要从整体来考虑局部,培养大局观。最后,本文提醒读者完成一个像模像样的网站需要付出更多的努力和实践。 ... [详细]
  • 本文介绍了使用Spark实现低配版高斯朴素贝叶斯模型的原因和原理。随着数据量的增大,单机上运行高斯朴素贝叶斯模型会变得很慢,因此考虑使用Spark来加速运行。然而,Spark的MLlib并没有实现高斯朴素贝叶斯模型,因此需要自己动手实现。文章还介绍了朴素贝叶斯的原理和公式,并对具有多个特征和类别的模型进行了讨论。最后,作者总结了实现低配版高斯朴素贝叶斯模型的步骤。 ... [详细]
  • Activiti7流程定义开发笔记
    本文介绍了Activiti7流程定义的开发笔记,包括流程定义的概念、使用activiti-explorer和activiti-eclipse-designer进行建模的方式,以及生成流程图的方法。还介绍了流程定义部署的概念和步骤,包括将bpmn和png文件添加部署到activiti数据库中的方法,以及使用ZIP包进行部署的方式。同时还提到了activiti.cfg.xml文件的作用。 ... [详细]
author-avatar
mobiledu2502897737
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有