热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Linux下线程的调度策略与优先级

Linux内核的三种调度策略:1,SCHED_OTHER分时调度策略,2,SCHED_FIFO实时调度策略,先到先服务。一旦占用cpu则一直运行。一直运行直到有更高优先级任务到达或自己放弃
Linux内核的三种调度策略:

  1,SCHED_OTHER 分时调度策略,
2,SCHED_FIFO实时调度策略,先到先服务。一旦占用cpu则一直运行。一直运行直到有更高优先级任务到达或自己放弃
   3,SCHED_RR实时调度策略,时间片轮转。当进程的时间片用完,系统将重新分配时间片,并置于就绪队列尾。放在队列尾保证了所有具有相同优先级的RR任务的调度公平
Linux线程优先级设置
   首先,可以通过以下两个函数来获得线程可以设置的最高和最低优先级,函数中的策略即上述三种策略的宏定义:

  int sched_get_priority_max(int policy);

  int sched_get_priority_min(int policy);

  SCHED_OTHER是不支持优先级使用的,而SCHED_FIFO和SCHED_RR支持优先级的使用,他们分别为1和99,数值越大优先级越高。
设置和获取优先级通过以下两个函数

int
pthread_attr_setschedparam(pthread_attr_t
*attr,
const struct sched_param
*param);
  int pthread_attr_getschedparam(const
pthread_attr_t
*
attr,
struct
sched_param *param);
 param.sched_priority
=
51;
//设置优先级

   系统创建线程时,默认的线程是SCHED_OTHER。所以如果我们要改变线程的调度策略的话,可以通过下面的这个函数实现。

int
pthread_attr_setschedpolicy(pthread_attr_t
*attr,
int policy);

上面的param使用了下面的这个数据结构:

struct sched_param
{
    int __sched_priority;
//所要设定的线程优先级
};

我们可以通过下面的测试程序来说明,我们自己使用的系统的支持的优先级:

#include
<stdio.h>
#include
<pthread.h>
#include
<sched.h>
#include
<assert.h>

static int get_thread_policy(pthread_attr_t
*attr)
{
  int policy;
  int rs
=
pthread_attr_getschedpolicy(attr,&policy);
  assert(rs==0);
  switch(policy)
  {
  case SCHED_FIFO:
    printf("policy= SCHED_FIFO\n");
    break;
  case SCHED_RR:
    printf("policy= SCHED_RR");
    break;
  case SCHED_OTHER:
    printf("policy=SCHED_OTHER\n");
    break;
  default:
    printf("policy=UNKNOWN\n");
    break;
  }
  return policy;
}

static void show_thread_priority(pthread_attr_t
*attr,int policy)
{
  int priority
=
sched_get_priority_max(policy);
  assert(priority!=-1);
  printf("max_priority=%d\n",priority);
  priority= sched_get_priority_min(policy);
  assert(priority!=-1);
  printf("min_priority=%d\n",priority);
}

static int get_thread_priority(pthread_attr_t
*attr)
{
  struct sched_param param;
  int rs
=
pthread_attr_getschedparam(attr,&param);
  assert(rs==0);
  printf("priority=%d",param.__sched_priority);
  return param.__sched_priority;
}

static void set_thread_policy(pthread_attr_t
*attr,int policy)
{
  int rs
=
pthread_attr_setschedpolicy(attr,policy);
  assert(rs==0);
  get_thread_policy(attr);
}

int main(void)
{
  pthread_attr_t attr;
  struct sched_param sched;
  int rs;
  rs = pthread_attr_init(&attr);
  assert(rs==0);

  int policy
=
get_thread_policy(&attr);
  printf("Show current configuration of priority\n");
    show_thread_priority(&attr,policy);
  printf("show SCHED_FIFO of priority\n");
 show_thread_priority(&attr,SCHED_FIFO);
  printf("show SCHED_RR of priority\n");
  show_thread_priority(&attr,SCHED_RR);
  printf("show priority of current thread\n");
  int priority
=
get_thread_priority(&attr);

  printf("Set thread policy\n");
  printf("set SCHED_FIFO policy\n");
  set_thread_policy(&attr,SCHED_FIFO);
  printf("set SCHED_RR policy\n");
  set_thread_policy(&attr,SCHED_RR);
  printf("Restore current policy\n");
  set_thread_policy(&attr,policy);

  rs = pthread_attr_destroy(&attr);
  assert(rs==0);
  return 0;
}

下面是测试程序的运行结果:

policy=SCHED_OTHER
Show current configuration of priority
max_priority=0
min_priority=0
show SCHED_FIFO of priority
max_priority=99
min_priority=1
show SCHED_RR of priority
max_priority=99
min_priority=1
show priority of current thread
priority=0Set thread policy
set SCHED_FIFO policy
policy= SCHED_FIFO
set SCHED_RR policy
policy= SCHED_RRRestore current policy
policy=SCHED_OTHER

 

 

 

 

 

 

 

   上一篇文章介绍了Linux下的调度策略和优先级,在Ubuntu09.10上的一些特性,这里测试一下其中的两种特性,SCHED_OTHER和SCHED_RR,还有就是优先级的问题,是不是能够保证,高优先级的线程,就可以保证先运行。
    下面的这个测试程序,创建了三个线程,默认创建的线程的调度策略是SCHED_OTHER,其余的两个线程的调度策略设置成SCHED_RR。我的Linux的内核版本是2.6.31。SCHED_RR是根据时间片来确定线程的调度。时间片用完了,不管这个线程的优先级有多高都不会在运行,而是进入就绪队列中,等待下一个时间片的到了,那这个时间片到底要持续多长时间?在《深入理解Linux内核》中的第七章进程调度中,是这样描诉的,Linux采取单凭经验的方法,即选择尽可能长、同时能保持良好相应时间的一个时间片。这里也没有给出一个具体的时间来,可能会根据不同的CPU 来定,还有就是多CPU 的情况。

#include
<stdio.h>
#include
<
unistd.h>
#include
<
stdlib.h>
#include
<
pthread.h>

void Thread1()
{
  sleep(1);
  int i,j;
  int policy;
  struct sched_param param;
  pthread_getschedparam(pthread_self(),&policy,&param);
  if(policy
=
= SCHED_OTHER)
    printf("SCHED_OTHER\n");
  if(policy
=
= SCHED_RR);
  printf("SCHED_RR 1 \n");
  if(policy==SCHED_FIFO)
    printf("SCHED_FIFO\n");

  for(i=1;i<10;i++)
  {
    for(j=1;j<5000000;j++)
    {
    }
    printf("thread 1\n");
  }
  printf("Pthread 1 exit\n");
}

void Thread2()
{
  sleep(1);
  int i,j,m;
  int policy;
  struct sched_param param;
pthread_getschedparam(pthread_self(),&policy,&param);
 if(policy
=
= SCHED_OTHER)
    printf("SCHED_OTHER\n");
  if(policy
=
= SCHED_RR);
  printf("SCHED_RR\n");
  if(policy==SCHED_FIFO)
    printf("SCHED_FIFO\n");

  for(i=1;i<10;i++)
  {
    for(j=1;j<5000000;j++)
    {
     
    }
    printf("thread 2\n");
  }
  printf("Pthread 2 exit\n");
}

void Thread3()
{
  sleep(1);
  int i,j;
  int policy;
  struct sched_param param;
pthread_getschedparam(pthread_self(),&policy,&param);
 if(policy
=
= SCHED_OTHER)
    printf("SCHED_OTHER\n");
  if(policy
=
= SCHED_RR)
    printf("SCHED_RR \n");
  if(policy==SCHED_FIFO)
    printf("SCHED_FIFO\n");

  for(i=1;i<10;i++)
  {
    for(j=1;j<5000000;j++)
    {
    }
    printf("thread 3\n");
  }
  printf("Pthread 3 exit\n");
}

int main()
{
  int i;
  i = getuid();
  if(i==0)
    printf("The current user is root\n");
  else
    printf("The current user is not root\n");

  pthread_t ppid1,ppid2,ppid3;
  struct sched_param param;

  pthread_attr_t attr,attr1,attr2;
  
  pthread_attr_init(&attr1);
pthread_attr_init(&attr);
pthread_attr_init(&attr2);
 
param.sched_priority= 51;
 pthread_attr_setschedpolicy(&attr2,SCHED_RR);
 pthread_attr_setschedparam(&attr2,&param);
 pthread_attr_setinheritsched(&attr2,PTHREAD_EXPLICIT_SCHED);//要使优先级其作用必须要有这句话

 param.sched_priority
=
21;
 pthread_attr_setschedpolicy(&attr1,SCHED_RR);
 pthread_attr_setschedparam(&attr1,&param);
 pthread_attr_setinheritsched(&attr1,PTHREAD_EXPLICIT_SCHED);
 
 pthread_create(&ppid3,&attr,(void
*)Thread3,NULL);
 pthread_create(&ppid2,&attr1,(void
*)Thread2,NULL);
 pthread_create(&ppid1,&attr2,(void
*)Thread1,NULL);
 
 pthread_join(ppid3,NULL);
 pthread_join(ppid2,NULL);
 pthread_join(ppid1,NULL);
 pthread_attr_destroy(&attr2);
 pthread_attr_destroy(&attr1);
 return 0;
}

下面是该程序的其中之一的运行结果:

sudo
.
/prio_test
The current user is root
SCHED_OTHER
SCHED_RR
SCHED_RR 1
thread 1
thread 1
thread 1
thread 1
thread 1
thread 1
thread 1
thread 1
thread 1
Pthread 1 exit
thread 2
thread 2
thread 2
thread 2
thread 2
thread 2
thread 2
thread 2
thread 2
Pthread 2 exit
thread 3
thread 3
thread 3
thread 3
thread 3
thread 3
thread 3
thread 3
thread 3
Pthread 3 exit

   这里我们可以看到,由于线程3的调度策略是SCHED_OTHER,而线程2的调度策略是SCHED_RR,所以,在Thread3中,线程3被线程1,线程2给抢占了。由于线程1的优先级大于线程2的优先级,所以,在线程1以先于线程2运行,不过,这里线程2有一部分代码还是先于线程1运行了。
    我原以为,只要线程的优先级高,就会一定先运行,其实,这样的理解是片面的,特别是在SMP的PC机上更会增加其不确定性。
    其实,普通进程的调度,是CPU根据进程优先级算出时间片,这样并不能一定保证高优先级的进程一定先运行,只不过和优先级低的进程相比,通常优先级较高的进程获得的CPU时间片会更长而已。其实,如果要想保证一个线程运行完在运行另一个线程的话,就要使用多线程的同步技术,信号量,条件变量等方法。
而不是 绝对依靠优先级的高低,来保证。
    不过,从运行的结果上,我们可以看到,
调度策略为SCHED_RR的线程1,线程2确实抢占了调度策略为SCHED_OTHER的线程3。这个是可以理解的,由于SCHER_RR是实时调度策略。
   只有在下述事件之一发生时,实时进程才会被另外一个进程取代。
  (1) 进程被另外一个具有更高实时优先级的实时进程抢占。
  (2) 进程执行了阻塞操作并进入睡眠
  (3)进程停止(处于TASK_STOPPED 或TASK_TRACED状态)或被杀死。
  (4)进程通过调用系统调用sched_yield(),自愿放弃CPU 。
  (5)进程基于时间片轮转的实时进程(SCHED_RR),而且用完了它的时间片。
   基于时间片轮转的实时进程是,不是真正的改变进程的优先级,而是改变进程的基本时间片的长度。所以基于时间片轮转的进程调度,并不能保证高优先级的进程先运行。
   下面是另一种运行结果:

sudo
.
/prio_test
The current user is root
SCHED_OTHER
SCHED_RR 1
thread 1
thread 1
thread 1
thread 1
thread 1
thread 1
thread 1
thread 1
thread 1
Pthread 1 exit
SCHED_RR
thread 2
thread 2
thread 2
thread 2
thread 2
thread 2
thread 2
thread 2
thread 2
Pthread 2 exit
thread 3
thread 3
thread 3
thread 3
thread 3
thread 3
thread 3
thread 3
thread 3
Pthread 3 exit

  可以看出并没有每一次都保证高优先级的线程先运行。


推荐阅读
  • Java太阳系小游戏分析和源码详解
    本文介绍了一个基于Java的太阳系小游戏的分析和源码详解。通过对面向对象的知识的学习和实践,作者实现了太阳系各行星绕太阳转的效果。文章详细介绍了游戏的设计思路和源码结构,包括工具类、常量、图片加载、面板等。通过这个小游戏的制作,读者可以巩固和应用所学的知识,如类的继承、方法的重载与重写、多态和封装等。 ... [详细]
  • 本文讨论了一个关于cuowu类的问题,作者在使用cuowu类时遇到了错误提示和使用AdjustmentListener的问题。文章提供了16个解决方案,并给出了两个可能导致错误的原因。 ... [详细]
  • 第七课主要内容:多进程多线程FIFO,LIFO,优先队列线程局部变量进程与线程的选择线程池异步IO概念及twisted案例股票数据抓取 ... [详细]
  • Iamtryingtomakeaclassthatwillreadatextfileofnamesintoanarray,thenreturnthatarra ... [详细]
  • Java容器中的compareto方法排序原理解析
    本文从源码解析Java容器中的compareto方法的排序原理,讲解了在使用数组存储数据时的限制以及存储效率的问题。同时提到了Redis的五大数据结构和list、set等知识点,回忆了作者大学时代的Java学习经历。文章以作者做的思维导图作为目录,展示了整个讲解过程。 ... [详细]
  • 阿,里,云,物,联网,net,core,客户端,czgl,aliiotclient, ... [详细]
  • Java学习笔记之面向对象编程(OOP)
    本文介绍了Java学习笔记中的面向对象编程(OOP)内容,包括OOP的三大特性(封装、继承、多态)和五大原则(单一职责原则、开放封闭原则、里式替换原则、依赖倒置原则)。通过学习OOP,可以提高代码复用性、拓展性和安全性。 ... [详细]
  • 本文介绍了深入浅出Linux设备驱动编程的重要性,以及两种加载和删除Linux内核模块的方法。通过一个内核模块的例子,展示了模块的编译和加载过程,并讨论了模块对内核大小的控制。深入理解Linux设备驱动编程对于开发者来说非常重要。 ... [详细]
  • 预备知识可参考我整理的博客Windows编程之线程:https:www.cnblogs.comZhuSenlinp16662075.htmlWindows编程之线程同步:https ... [详细]
  • Java自带的观察者模式及实现方法详解
    本文介绍了Java自带的观察者模式,包括Observer和Observable对象的定义和使用方法。通过添加观察者和设置内部标志位,当被观察者中的事件发生变化时,通知观察者对象并执行相应的操作。实现观察者模式非常简单,只需继承Observable类和实现Observer接口即可。详情请参考Java官方api文档。 ... [详细]
  • 重入锁(ReentrantLock)学习及实现原理
    本文介绍了重入锁(ReentrantLock)的学习及实现原理。在学习synchronized的基础上,重入锁提供了更多的灵活性和功能。文章详细介绍了重入锁的特性、使用方法和实现原理,并提供了类图和测试代码供读者参考。重入锁支持重入和公平与非公平两种实现方式,通过对比和分析,读者可以更好地理解和应用重入锁。 ... [详细]
  • BZOJ1233 干草堆单调队列优化DP
    本文介绍了一个关于干草堆摆放的问题,通过使用单调队列来优化DP算法,求解最多可以叠几层干草堆。具体的解题思路和转移方程在文章中进行了详细说明,并给出了相应的代码示例。 ... [详细]
  • linux进阶50——无锁CAS
    1.概念比较并交换(compareandswap,CAS),是原⼦操作的⼀种,可⽤于在多线程编程中实现不被打断的数据交换操作࿰ ... [详细]
  • 在开发中,有时候一个业务上要求的原子操作不仅仅包括数据库,还可能涉及外部接口或者消息队列。此时,传统的数据库事务无法满足需求。本文介绍了Java中如何利用java.lang.Runtime.addShutdownHook方法来保证业务线程的完整性。通过添加钩子,在程序退出时触发钩子,可以执行一些操作,如循环检查某个线程的状态,直到业务线程正常退出,再结束钩子程序。例子程序展示了如何利用钩子来保证业务线程的完整性。 ... [详细]
  • Opencv提供了几种分类器,例程里通过字符识别来进行说明的1、支持向量机(SVM):给定训练样本,支持向量机建立一个超平面作为决策平面,使得正例和反例之间的隔离边缘被最大化。函数原型:训练原型cv ... [详细]
author-avatar
sj_Ford
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有