热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

背包问题九讲笔记_完全背包

摘自TianyiCui童鞋的《背包问题九讲》,稍作修改,方便理解。本文包含的内容:<1>问题描述<2>基本思路(直接扩展01背包的方程)<3>转换为01背包

摘自Tianyi Cui童鞋的《背包问题九讲》,稍作修改,方便理解。

本文包含的内容:

<1> 问题描述

<2> 基本思路(直接扩展01背包的方程)

<3> 转换为01背包问题求解(直接利用01背包)

<4> O(VN)的算法

---------------------------------------------

1、问题描述

已知:有一个容量为V的背包和N件物品,第i件物品的重量是weight[i],收益是cost[i]。

条件:每种物品都有无限件,能放多少就放多少。

问题:在不超过背包容量的情况下,最多能获得多少价值或收益

举例:物品个数N = 3,背包容量为V = 5,则背包可以装下的最大价值为40.

----------------------------------------------

2、基本思路(直接扩展01背包的方程)

由于本问题类似于01背包问题,在01背包问题中,物品要么取,要么不取,而在完全背包中,物品可以取0件、取1件、取2件...直到背包放不下位置。因此,可以直接在01背包的递推式中扩展得到。

f[i][v]:表示前i件物品放入容量为v的容量中时的最大收益
递推式:
f[i][v] = max(f[i - 1][v],f[i - K * weight[i]] + K * Value[i]); 其中 1 <= K * weight[i] <= v,(v指此时背包容量)
//初始条件
f[0][v] = 0;
f[i][0] = 0;
代码:

#include 
#include
using namespace std;
/*
f[i][v]:前i件物品放入背包容量为v的背包获得的最大收益

f[i][v] = max(f[i - 1][v],f[i - 1][v - k * Wi] + k * Vi,其中 1<=k<= v/Wi)

边界条件
f[0][v] = 0;
f[i][0] = 0;
*/

const int N = 3;
const int V = 5;
int weight[N + 1] = {0,3,2,2};
int Value[N + 1] = {0,5,10,20};

int f[N + 1][V + 1] = {0};

int Completeknapsack()
{
//边界条件
for (int i = 0;i <= N;i++)
{
f[i][0] = 0;
}
for (int v = 0;v <= V;v++)
{
f[0][v] = 0;
}
//递推
for (int i = 1;i <= N;i++)
{
for (int v = 1;v <= V;v++)
{
f[i][v] = 0;
int nCount = v / weight[i];
for (int k = 0;k <= nCount;k++)
{
f[i][v] = max(f[i][v],f[i - 1][v - k * weight[i]] + k * Value[i]);
}
}
}
return f[N][V];
}

int main()
{
cout<system("pause");
return 1;
}
复杂度分析:

程序需要求解N*V个状态,每一个状态需要的时间为O(v/Weight[i]),总的复杂度为O(NV*Σ(V/c[i]))。

代码优化:

完全背包问题有一个很简单有效的优化,是这样的:若两件物品i、j满足c[i]<=c[j]且w[i]>=w[j],则将物品j去掉,不用考虑。

即,如果一个物品A是占的地少且价值高,而物品B是占地多,但是价值不怎么高,那么肯定是优先考虑A物品的。

这里代码略。

----------------------------------------------

3、转换为01背包问题求解(直接利用01背包)

思路 1、完全背包的物品可以取无限件,根据背包的总容量V和第i件物品的总重量Weight[i],可知,背包中最多装入V/Weight[i](向下取整)件该物品。因此可以直接改变第i件物品的总个数,使之达到V/Weight[i](向下取整)件,之后直接利用01背包的思路进行操作即可。

举例:物品个数N = 3,背包容量为V = 5。

拆分之前的物品序列:


拆分之后的物品序列:


根据上述思想:在背包的最大容量(5)中,最多可以装入1件物品一,因此不用扩展物品一。最多可以装入2件物品二,因此可以扩展一件物品二。同理,可以扩展一件物品三。

时间复杂度的分析:O(NNew*V),其V表示扩展前背包容量,NNew表示扩展后物品的个数,NNew = Σ(V/Weight[i](向下取整))

思路 2、对物品进行拆分时,拆成二进制的形式。

具体思路:把第i种物品拆成费用为weight[i]*2^k、价值为w[i]*2^k的若干件物品,其中k满足weight[i]*2^k<=V。

思路:这是二进制的思想,因为不管最优策略选几件第i种物品,总可以表示成若干个2^k件物品的和。

这样把每种物品拆成O(log V/weight[i])件物品,是一个很大的改进。

举例:物品个数N = 3,背包总容量为V = 5。
拆分之前的物品序列:


拆分之后的物品序列:


为了和前面的例子保持一致,这里才用之前的例子,但是这个例子没有更好的说明二进制的拆分方法拆分的物品个数会少写。

假设物品A的重量为2,收益为3,背包的总重量为20。

根据第一种拆分,可以拆成10个物品,每一个物品的重量为2,收益为3

根据第二种拆分方法,可以拆成4个物品,分别是物品一(重量为1*2,收益为3),物品二(重量为2*2,收益为6),物品三(重量为4*2,收益为12),物品四(重量为8*2,收益为24)。

时间复杂度的分析:O(NNEW*V),其中V表示扩展前背包容量,NNew表示扩展后物品的个数,NNew = Σ(log V/weight[i](向下取整))

代码:

#include 
#include
#include
using namespace std;
/*
f[v]:表示第i件物品放入容量为v的背包后,获得的最大容量
f[v] = max(f[v],f[v - weight[i]] + value[i]);
初始条件:f[0] = 0;
*/

const int N = 3;
const int V = 20;//5
int weight[N + 1] = {0,3,2,2};
int Value[N + 1] = {0,5,10,20};

int NNew = 0;
vector weightVector;
vector Valuevector;
int f[V + 1] = {0};
/*拆分物品*/
void SplitItem()
{
//从1开始
weightVector.push_back(0);
Valuevector.push_back(0);
//开始拆分
int nPower = 1;
for (int i = 1;i <= N;i++)
{
nPower = 1;
while (nPower * weight[i] <= V)
{
weightVector.push_back(nPower * weight[i]);
Valuevector.push_back(nPower * Value[i]);
nPower <<= 1;
}
}
}

int Completeknapsack()
{
//拆分物品
SplitItem();
//转化为01背包处理
NNew = weightVector.size() - 1;//多加了一个0,要减去

for (int i = 1;i <= NNew;i++)//物品个数变化
{
for (int v = V;v >= weightVector[i];v--)//背包容量仍是V
{
f[v] = max(f[v],f[v - weightVector[i]] + Valuevector[i]);
}
}

return f[NNew];
}
int main()
{
cout<system("pause");
return 1;
}
4、O(VN)的算法

伪代码

for (int i = 1;i <= N;i++)
{
for (int v = weight[i];v <= V;v++)
{
f[v] = max(f[v],f[v - weight[i]] + Value[i]);
}
}
分析:这和01背包的伪代码很相似,在01背包的代码中,v变化的区间是逆序循环的,即[V,Weight[i]]。而这里,v变化的区间是顺序循环的,即为[Weight[i],V]。

原因:

再次给出定义:

f[i][v]表示把前i件物品放入容量为v的背包时的最大代价。

f[i-1][v-c[i]]表示把前i - 1件物品放入容量为v的背包时的最大代价.

在01背包中,v变化的区间是逆序循环的原因要保证由状态f[i-1][v-c[i]]递推状态f[i][v]时,f[i-1][v-c[i]]没有放入第i件物品之后,在第i循环时,放入一件第i件物品。

01背包的方程:

f[i][v] = max(f[i - 1][v],f[i - 1][v - weight[i]] + Value[i])  

在完全背包中,v变化的区间是顺序循环的原因完全背包的特点是每种物品可选无限件,在求解加选第i种物品带来的收益f[i][v]时,在状态f[i][v-c[i]]中已经尽可能多的放入物品i了,此时在f[i][v-c[i]]的基础上,我们可以再次放入一件物品i,此时也是在不超过背包容量的基础下,尽可能多的放入物品i。

完全背包的方程:

f[i][v] = max(f[i - 1][v],f[i][v - weight[i]] + Value[i]);

举例:

物品个数N = 3,背包总容量为V = 5。

物品信息:


完全背包:


分析:

i = 2,表示正在处理第2件物品。在求解f[2][4]时,如果要计算把第2件物品放入背包后的代价时,我们需要知道f[2][2],此时f[2][2]中已经尽全力放入第2件物品了(已经放入一件)。此时此刻还可以在放入一件第2件物品,在背包容量为4时,最多可以放入两件第二件物品。

总结下,f[i][v]:表示在背包容量为v时,尽全力的放入第i件物品的代价。f[i][v - weight[i]]:表示在背包容量为v - weight[i]时,尽全力的放入第i件物品的代价。因此由f[i][v - weight[i]]转换为f[i][v]时,也是在f[i][v - weight[i]]的基础上有加入了一件物品i。

为了节省保存状态的空间,可以直接使用一维数组保存状态。

代码:迭代方程:f[i][v] = max(f[i - 1][v],f[i][v - weight[i]] + Value[i]);

#include 
#include
#include
using namespace std;
const int N = 3;
const int V = 5;//5
int weight[N + 1] = {0,3,2,2};
int Value[N + 1] = {0,5,10,20};

int f[N + 1][V + 1] = {0};

int Completeknapsack()
{
//初始化
for (int i = 0;i <= N;i++)
{
f[i][0] = 0;
}
for (int v = 0;v <= V;v++)
{
f[0][v] = 0;
}
for (int i = 1;i <= N;i++)
{
for (int v = weight[i];v <= V;v++)
{
f[i][v] = max(f[i - 1][v],f[i][v - weight[i]] + Value[i]);
}
}
return f[N][V];
}

int main()
{
cout<system("pause");
return 1;
}
代码:迭代方程: f[v] = max(f[v],f[v - weight[i]] + Value[i]);

#include 
using namespace std;
const int N = 3;
const int V = 5;//5
int weight[N + 1] = {0,3,2,2};
int Value[N + 1] = {0,5,10,20};

int f[V + 1] = {0};

int Completeknapsack()
{
f[0] = 0;
for (int i = 1;i <= N;i++)
{
for (int v = weight[i];v <= V;v++)
{
f[v] = max(f[v],f[v - weight[i]] + Value[i]);
}
}
return f[V];
}
int main()
{
cout<system("pause");
return 1;
}


推荐阅读
  • 阿里Treebased Deep Match(TDM) 学习笔记及技术发展回顾
    本文介绍了阿里Treebased Deep Match(TDM)的学习笔记,同时回顾了工业界技术发展的几代演进。从基于统计的启发式规则方法到基于内积模型的向量检索方法,再到引入复杂深度学习模型的下一代匹配技术。文章详细解释了基于统计的启发式规则方法和基于内积模型的向量检索方法的原理和应用,并介绍了TDM的背景和优势。最后,文章提到了向量距离和基于向量聚类的索引结构对于加速匹配效率的作用。本文对于理解TDM的学习过程和了解匹配技术的发展具有重要意义。 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • 云原生边缘计算之KubeEdge简介及功能特点
    本文介绍了云原生边缘计算中的KubeEdge系统,该系统是一个开源系统,用于将容器化应用程序编排功能扩展到Edge的主机。它基于Kubernetes构建,并为网络应用程序提供基础架构支持。同时,KubeEdge具有离线模式、基于Kubernetes的节点、群集、应用程序和设备管理、资源优化等特点。此外,KubeEdge还支持跨平台工作,在私有、公共和混合云中都可以运行。同时,KubeEdge还提供数据管理和数据分析管道引擎的支持。最后,本文还介绍了KubeEdge系统生成证书的方法。 ... [详细]
  • CSS3选择器的使用方法详解,提高Web开发效率和精准度
    本文详细介绍了CSS3新增的选择器方法,包括属性选择器的使用。通过CSS3选择器,可以提高Web开发的效率和精准度,使得查找元素更加方便和快捷。同时,本文还对属性选择器的各种用法进行了详细解释,并给出了相应的代码示例。通过学习本文,读者可以更好地掌握CSS3选择器的使用方法,提升自己的Web开发能力。 ... [详细]
  • 本文介绍了Java工具类库Hutool,该工具包封装了对文件、流、加密解密、转码、正则、线程、XML等JDK方法的封装,并提供了各种Util工具类。同时,还介绍了Hutool的组件,包括动态代理、布隆过滤、缓存、定时任务等功能。该工具包可以简化Java代码,提高开发效率。 ... [详细]
  • JavaScript设计模式之策略模式(Strategy Pattern)的优势及应用
    本文介绍了JavaScript设计模式之策略模式(Strategy Pattern)的定义和优势,策略模式可以避免代码中的多重判断条件,体现了开放-封闭原则。同时,策略模式的应用可以使系统的算法重复利用,避免复制粘贴。然而,策略模式也会增加策略类的数量,违反最少知识原则,需要了解各种策略类才能更好地应用于业务中。本文还以员工年终奖的计算为例,说明了策略模式的应用场景和实现方式。 ... [详细]
  • 知识图谱——机器大脑中的知识库
    本文介绍了知识图谱在机器大脑中的应用,以及搜索引擎在知识图谱方面的发展。以谷歌知识图谱为例,说明了知识图谱的智能化特点。通过搜索引擎用户可以获取更加智能化的答案,如搜索关键词"Marie Curie",会得到居里夫人的详细信息以及与之相关的历史人物。知识图谱的出现引起了搜索引擎行业的变革,不仅美国的微软必应,中国的百度、搜狗等搜索引擎公司也纷纷推出了自己的知识图谱。 ... [详细]
  • 使用Ubuntu中的Python获取浏览器历史记录原文: ... [详细]
  • 本文介绍了Hyperledger Fabric外部链码构建与运行的相关知识,包括在Hyperledger Fabric 2.0版本之前链码构建和运行的困难性,外部构建模式的实现原理以及外部构建和运行API的使用方法。通过本文的介绍,读者可以了解到如何利用外部构建和运行的方式来实现链码的构建和运行,并且不再受限于特定的语言和部署环境。 ... [详细]
  • 本文介绍了Perl的测试框架Test::Base,它是一个数据驱动的测试框架,可以自动进行单元测试,省去手工编写测试程序的麻烦。与Test::More完全兼容,使用方法简单。以plural函数为例,展示了Test::Base的使用方法。 ... [详细]
  • Voicewo在线语音识别转换jQuery插件的特点和示例
    本文介绍了一款名为Voicewo的在线语音识别转换jQuery插件,该插件具有快速、架构、风格、扩展和兼容等特点,适合在互联网应用中使用。同时还提供了一个快速示例供开发人员参考。 ... [详细]
  • XML介绍与使用的概述及标签规则
    本文介绍了XML的基本概念和用途,包括XML的可扩展性和标签的自定义特性。同时还详细解释了XML标签的规则,包括标签的尖括号和合法标识符的组成,标签必须成对出现的原则以及特殊标签的使用方法。通过本文的阅读,读者可以对XML的基本知识有一个全面的了解。 ... [详细]
  • Google Play推出全新的应用内评价API,帮助开发者获取更多优质用户反馈。用户每天在Google Play上发表数百万条评论,这有助于开发者了解用户喜好和改进需求。开发者可以选择在适当的时间请求用户撰写评论,以获得全面而有用的反馈。全新应用内评价功能让用户无需返回应用详情页面即可发表评论,提升用户体验。 ... [详细]
  • Tomcat/Jetty为何选择扩展线程池而不是使用JDK原生线程池?
    本文探讨了Tomcat和Jetty选择扩展线程池而不是使用JDK原生线程池的原因。通过比较IO密集型任务和CPU密集型任务的特点,解释了为何Tomcat和Jetty需要扩展线程池来提高并发度和任务处理速度。同时,介绍了JDK原生线程池的工作流程。 ... [详细]
  • 本文介绍了Linux系统中正则表达式的基础知识,包括正则表达式的简介、字符分类、普通字符和元字符的区别,以及在学习过程中需要注意的事项。同时提醒读者要注意正则表达式与通配符的区别,并给出了使用正则表达式时的一些建议。本文适合初学者了解Linux系统中的正则表达式,并提供了学习的参考资料。 ... [详细]
author-avatar
海马33电影网-2
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有