热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

20200826:裸写算法:树的非递归先序遍历。

福哥答案2020-08-26:方法1:迭代算法从根节点开始,每次迭代弹出当前栈顶元素,并将其孩子节点压入栈中,先压右孩子再压左孩子。在这个算法中,输出到最终结果的顺序按照Top-

福哥答案2020-08-26:

方法 1:迭代
算法
从根节点开始,每次迭代弹出当前栈顶元素,并将其孩子节点压入栈中,先压右孩子再压左孩子。
在这个算法中,输出到最终结果的顺序按照 Top->Bottom 和 Left->Right,符合前序遍历的顺序。

算法复杂度
时间复杂度:访问每个节点恰好一次,时间复杂度为 O(N) ,其中 N 是节点的个数,也就是树的大小。
空间复杂度:取决于树的结构,最坏情况存储整棵树,因此空间复杂度是 O(N)。

方法 2:莫里斯遍历
方法基于 莫里斯的文章,可以优化空间复杂度。算法不会使用额外空间,只需要保存最终的输出结果。如果实时输出结果,那么空间复杂度是 O(1)。
算法
算法的思路是从当前节点向下访问先序遍历的前驱节点,每个前驱节点都恰好被访问两次。
首先从当前节点开始,向左孩子走一步然后沿着右孩子一直向下访问,直到到达一个叶子节点(当前节点的中序遍历前驱节点),所以我们更新输出并建立一条伪边 predecessor.Right = root 更新这个前驱的下一个点。如果我们第二次访问到前驱节点,由于已经指向了当前节点,我们移除伪边并移动到下一个顶点。
如果第一步向左的移动不存在,就直接更新输出并向右移动。

算法复杂度
时间复杂度:每个前驱恰好访问两次,因此复杂度是 O(N),其中 N 是顶点的个数,也就是树的大小。
空间复杂度:我们在计算中不需要额外空间,但是输出需要包含 N 个元素,因此空间复杂度为 O(N)。

代码用golang编写,如下:

package test34_preordertraversal
import (
"fmt"
"testing"
)
//https://leetcode-cn.com/problems/binary-tree-preorder-traversal/solution/er-cha-shu-de-qian-xu-bian-li-by-leetcode/
//go test -v -test.run TestPreorderTraversal
func TestPreorderTraversal(t *testing.T) {
root := &TreeNode{}
root.Val = 1
root.Left = &TreeNode{}
root.Left.Val = 2
root.Right = &TreeNode{}
root.Right.Val = 3
root.Left.Left = &TreeNode{}
root.Left.Left.Val = 4
root.Left.Right = &TreeNode{}
root.Left.Right.Val = 5
root.Right.Left = &TreeNode{}
root.Right.Left.Val = 6
root.Right.Right = &TreeNode{}
root.Right.Right.Val = 7
fmt.Println(preorderTraversal1(root))
fmt.Println(preorderTraversal2(root))
}
//Definition for a binary tree node.
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
//方法 1:迭代
//从根节点开始,每次迭代弹出当前栈顶元素,并将其孩子节点压入栈中,先压右孩子再压左孩子。
//在这个算法中,输出到最终结果的顺序按照 Top->Bottom 和 Left->Right,符合前序遍历的顺序。
//算法复杂度
//时间复杂度:访问每个节点恰好一次,时间复杂度为 O(N) ,其中 N 是节点的个数,也就是树的大小。
//空间复杂度:取决于树的结构,最坏情况存储整棵树,因此空间复杂度是 O(N)。
func preorderTraversal1(root *TreeNode) []int {
stack := make([]*TreeNode, 0)
output := make([]int, 0)
if root == nil {
return output
}
//push 根
stack = append(stack, root)
for len(stack) > 0 {
//pop
node := stack[len(stack)-1]
stack = stack[0 : len(stack)-1]
output = append(output, node.Val)
if node.Right != nil {
//push右
stack = append(stack, node.Right)
}
if node.Left != nil {
//push左
stack = append(stack, node.Left)
}
}
return output
}
//方法 2:莫里斯遍历
//方法基于 莫里斯的文章,可以优化空间复杂度。算法不会使用额外空间,只需要保存最终的输出结果。如果实时输出结果,那么空间复杂度是 O(1)。
//算法
//算法的思路是从当前节点向下访问先序遍历的前驱节点,每个前驱节点都恰好被访问两次。
//首先从当前节点开始,向左孩子走一步然后沿着右孩子一直向下访问,直到到达一个叶子节点(当前节点的中序遍历前驱节点),所以我们更新输出并建立一条伪边 predecessor.Right = root 更新这个前驱的下一个点。如果我们第二次访问到前驱节点,由于已经指向了当前节点,我们移除伪边并移动到下一个顶点。
//如果第一步向左的移动不存在,就直接更新输出并向右移动。
//算法复杂度
//时间复杂度:每个前驱恰好访问两次,因此复杂度是 O(N),其中 N 是顶点的个数,也就是树的大小。
//空间复杂度:我们在计算中不需要额外空间,但是输出需要包含 N 个元素,因此空间复杂度为 O(N)。
func preorderTraversal2(root *TreeNode) []int {
output := make([]int, 0)
node := root
for node != nil {
if node.Left == nil {
//push根
output = append(output, node.Val)
//右
node = node.Right
} else {
predecessor := node.Left
for predecessor.Right != nil && predecessor.Right != node {
predecessor = predecessor.Right
}
if predecessor.Right == nil {
output = append(output, node.Val)
predecessor.Right = node
node = node.Left
} else {
predecessor.Right = nil
node = node.Right
}
}
}
return output
}

敲命令 go test -v -test.run TestPreorderTraversal ,执行结果如下:

 



推荐阅读
  • 本文介绍了Codeforces Round #321 (Div. 2)比赛中的问题Kefa and Dishes,通过状压和spfa算法解决了这个问题。给定一个有向图,求在不超过m步的情况下,能获得的最大权值和。点不能重复走。文章详细介绍了问题的题意、解题思路和代码实现。 ... [详细]
  • 云原生边缘计算之KubeEdge简介及功能特点
    本文介绍了云原生边缘计算中的KubeEdge系统,该系统是一个开源系统,用于将容器化应用程序编排功能扩展到Edge的主机。它基于Kubernetes构建,并为网络应用程序提供基础架构支持。同时,KubeEdge具有离线模式、基于Kubernetes的节点、群集、应用程序和设备管理、资源优化等特点。此外,KubeEdge还支持跨平台工作,在私有、公共和混合云中都可以运行。同时,KubeEdge还提供数据管理和数据分析管道引擎的支持。最后,本文还介绍了KubeEdge系统生成证书的方法。 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • 本文讨论了使用差分约束系统求解House Man跳跃问题的思路与方法。给定一组不同高度,要求从最低点跳跃到最高点,每次跳跃的距离不超过D,并且不能改变给定的顺序。通过建立差分约束系统,将问题转化为图的建立和查询距离的问题。文章详细介绍了建立约束条件的方法,并使用SPFA算法判环并输出结果。同时还讨论了建边方向和跳跃顺序的关系。 ... [详细]
  • 生成对抗式网络GAN及其衍生CGAN、DCGAN、WGAN、LSGAN、BEGAN介绍
    一、GAN原理介绍学习GAN的第一篇论文当然由是IanGoodfellow于2014年发表的GenerativeAdversarialNetworks(论文下载链接arxiv:[h ... [详细]
  • Go GUIlxn/walk 学习3.菜单栏和工具栏的具体实现
    本文介绍了使用Go语言的GUI库lxn/walk实现菜单栏和工具栏的具体方法,包括消息窗口的产生、文件放置动作响应和提示框的应用。部分代码来自上一篇博客和lxn/walk官方示例。文章提供了学习GUI开发的实际案例和代码示例。 ... [详细]
  • Go Cobra命令行工具入门教程
    本文介绍了Go语言实现的命令行工具Cobra的基本概念、安装方法和入门实践。Cobra被广泛应用于各种项目中,如Kubernetes、Hugo和Github CLI等。通过使用Cobra,我们可以快速创建命令行工具,适用于写测试脚本和各种服务的Admin CLI。文章还通过一个简单的demo演示了Cobra的使用方法。 ... [详细]
  • Go语言实现堆排序的详细教程
    本文主要介绍了Go语言实现堆排序的详细教程,包括大根堆的定义和完全二叉树的概念。通过图解和算法描述,详细介绍了堆排序的实现过程。堆排序是一种效率很高的排序算法,时间复杂度为O(nlgn)。阅读本文大约需要15分钟。 ... [详细]
  • 李逍遥寻找仙药的迷阵之旅
    本文讲述了少年李逍遥为了救治婶婶的病情,前往仙灵岛寻找仙药的故事。他需要穿越一个由M×N个方格组成的迷阵,有些方格内有怪物,有些方格是安全的。李逍遥需要避开有怪物的方格,并经过最少的方格,找到仙药。在寻找的过程中,他还会遇到神秘人物。本文提供了一个迷阵样例及李逍遥找到仙药的路线。 ... [详细]
  • (三)多表代码生成的实现方法
    本文介绍了一种实现多表代码生成的方法,使用了java代码和org.jeecg框架中的相关类和接口。通过设置主表配置,可以生成父子表的数据模型。 ... [详细]
  • Android系统源码分析Zygote和SystemServer启动过程详解
    本文详细解析了Android系统源码中Zygote和SystemServer的启动过程。首先介绍了系统framework层启动的内容,帮助理解四大组件的启动和管理过程。接着介绍了AMS、PMS等系统服务的作用和调用方式。然后详细分析了Zygote的启动过程,解释了Zygote在Android启动过程中的决定作用。最后通过时序图展示了整个过程。 ... [详细]
  • SpringBoot整合SpringSecurity+JWT实现单点登录
    SpringBoot整合SpringSecurity+JWT实现单点登录,Go语言社区,Golang程序员人脉社 ... [详细]
  • STL迭代器的种类及其功能介绍
    本文介绍了标准模板库(STL)定义的五种迭代器的种类和功能。通过图表展示了这几种迭代器之间的关系,并详细描述了各个迭代器的功能和使用方法。其中,输入迭代器用于从容器中读取元素,输出迭代器用于向容器中写入元素,正向迭代器是输入迭代器和输出迭代器的组合。本文的目的是帮助读者更好地理解STL迭代器的使用方法和特点。 ... [详细]
  • 本文介绍了在多平台下进行条件编译的必要性,以及具体的实现方法。通过示例代码展示了如何使用条件编译来实现不同平台的功能。最后总结了只要接口相同,不同平台下的编译运行结果也会相同。 ... [详细]
  • 数组的排序:数组本身有Arrays类中的sort()方法,这里写几种常见的排序方法。(1)冒泡排序法publicstaticvoidmain(String[]args ... [详细]
author-avatar
囬憶啲伈情_542_256_427
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有