热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

[bzoj4671]异或图——容斥+斯特林数反演+线性基

题目大意:定义两个结点数相同的图G1与图G2的异或为一个新的图G,其中如果(u,v)在G1与G2中的出现次数之和为1,那么边(u,v)在G中,否则这条边不在G中.现在给定s个结点数

题目大意:

定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 G 中.

现在给定 s 个结点数相同的图 G1...s, 设 S = {G1, G2, . . . , Gs}, 请问 S 有多少个子集的异或为一个连通图?


思路:

这种计算连通图的个数的题目一般情况下考虑容斥。

由于一个图的联通不好直接计算,但是对于点集的划分,我们要使它不连通会容易得多。

于是在发现虽然\(s\)较大,但是\(n\)很小的情况下,我们可以枚举这\(n\)个点的划分,然后对于每一个划分,强制不同集合中的点不连通,同一个集合中的点任意,然后计算满足条件的图的个数。

这个时候我们的容斥系数应该满足这样的条件,对于一个拥有\(m\)个联通块的图,需要满足

\[
\sum_{i=1}^{m}{m\brace i}\times f_i=[m=1]
\]

然后考虑直接用斯特林数反演来求出\(f_i:\)

\[
f_i=(-1)^{(i-1)}\times (i-1)!
\]

接下来考虑如何计算满足各个集合中的点不连通的方案数,这里把跨越集合的边单独提出来,每条边的存在状况可以看成是一个\(01\)串,现在即求这\(s\)个01串的异或和中有多少个\(0\)。

于是我们可以直接对这\(s\)个数建立线性基,如果最后线性基中有\(c\)个元素,那么一共有\(2^{s-c}\)种方式可以使异或和为0。

#include
#define REP(i,a,b) for(int i=a,i##_end_=b;i<=i##_end_;++i)
#define DREP(i,a,b) for(int i=a,i##_end_=b;i>=i##_end_;--i)
#define debug(x) cout<<#x<<"="<#define fi first
#define se second
#define mk make_pair
#define pb push_back
typedef long long ll;
using namespace std;
void File(){
freopen("bzoj4671.in","r",stdin);
freopen("bzoj4671.out","w",stdout);
}
templatevoid read(T &_){
_=0; T f=1; char c=getchar();
for(;!isdigit(c);c=getchar())if(c=='-')f=-1;
for(;isdigit(c);c=getchar())_=(_<<1)+(_<<3)+(c^'0');
_*=f;
}
const int maxn=10+10;
const int maxs=60+10;
int s,n,bel[maxn],q[maxs],cnt;
char str[maxs][maxs];
ll num[maxs],fac[maxs],f[maxs],ans,b[maxs];
void init(){
read(s);
REP(i,1,s)scanf("%s",str[i]+1);
int len=strlen(str[1]+1);
REP(i,2,10)if(i*(i-1)/2==len)n=i;
fac[0]=1;
REP(i,1,10)fac[i]=fac[i-1]*i;
REP(i,1,10)f[i]=((i-1)%2 ? -1 : 1)*fac[i-1];
}
void calc(int tot){
REP(i,1,s){
num[i]=0;
REP(j,1,cnt)num[i]=num[i]<<1|(str[i][q[j]]^'0');
}
REP(i,1,cnt)b[i]=0;
int c=0;
REP(i,1,s){
DREP(j,cnt,1){
if((1ll<<(j-1))&num[i]){
if(!b[j]){++c;b[j]=num[i];break;}
num[i]^=b[j];
}
}
}
ans+=f[tot]*(1ll<<(s-c));
}
void dfs(int k,int tot){
if(k>n){
cnt=0;
int id=0;
REP(i,1,n)REP(j,i+1,n){
++id;
if(bel[i]!=bel[j])
q[++cnt]=id;
}
calc(tot);
return;
}
bel[k]=tot+1;
dfs(k+1,tot+1);
REP(i,1,tot){
bel[k]=i;
dfs(k+1,tot);
}
}
int main(){
File();
init();
dfs(1,0);
printf("%lld\n",ans);
return 0;
}


推荐阅读
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • Splay Tree 区间操作优化
    本文详细介绍了使用Splay Tree进行区间操作的实现方法,包括插入、删除、修改、翻转和求和等操作。通过这些操作,可以高效地处理动态序列问题,并且代码实现具有一定的挑战性,有助于编程能力的提升。 ... [详细]
  • 本实验主要探讨了二叉排序树(BST)的基本操作,包括创建、查找和删除节点。通过具体实例和代码实现,详细介绍了如何使用递归和非递归方法进行关键字查找,并展示了删除特定节点后的树结构变化。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 本题探讨了一种字符串变换方法,旨在判断两个给定的字符串是否可以通过特定的字母替换和位置交换操作相互转换。核心在于找到这些变换中的不变量,从而确定转换的可能性。 ... [详细]
  • 火星商店问题:线段树分治与持久化Trie树的应用
    本题涉及编号为1至n的火星商店,每个商店有一个永久商品价值v。操作包括每天在指定商店增加一个新商品,以及查询某段时间内某些商店中所有商品(含永久商品)与给定密码值的最大异或结果。通过线段树分治和持久化Trie树来高效解决此问题。 ... [详细]
  • C++实现经典排序算法
    本文详细介绍了七种经典的排序算法及其性能分析。每种算法的平均、最坏和最好情况的时间复杂度、辅助空间需求以及稳定性都被列出,帮助读者全面了解这些排序方法的特点。 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 本文深入探讨 MyBatis 中动态 SQL 的使用方法,包括 if/where、trim 自定义字符串截取规则、choose 分支选择、封装查询和修改条件的 where/set 标签、批量处理的 foreach 标签以及内置参数和 bind 的用法。 ... [详细]
  • 在前两篇文章中,我们探讨了 ControllerDescriptor 和 ActionDescriptor 这两个描述对象,分别对应控制器和操作方法。本文将基于 MVC3 源码进一步分析 ParameterDescriptor,即用于描述 Action 方法参数的对象,并详细介绍其工作原理。 ... [详细]
  • C++: 实现基于类的四面体体积计算
    本文介绍如何使用C++编程语言,通过定义类和方法来计算由四个三维坐标点构成的四面体体积。文中详细解释了四面体体积的数学公式,并提供了两种不同的实现方式。 ... [详细]
  • UNP 第9章:主机名与地址转换
    本章探讨了用于在主机名和数值地址之间进行转换的函数,如gethostbyname和gethostbyaddr。此外,还介绍了getservbyname和getservbyport函数,用于在服务器名和端口号之间进行转换。 ... [详细]
  • 扫描线三巨头 hdu1928hdu 1255  hdu 1542 [POJ 1151]
    学习链接:http:blog.csdn.netlwt36articledetails48908031学习扫描线主要学习的是一种扫描的思想,后期可以求解很 ... [详细]
  • 题目Link题目学习link1题目学习link2题目学习link3%%%受益匪浅!-----&# ... [详细]
  • 本文探讨了 C++ 中普通数组和标准库类型 vector 的初始化方法。普通数组具有固定长度,而 vector 是一种可扩展的容器,允许动态调整大小。文章详细介绍了不同初始化方式及其应用场景,并提供了代码示例以加深理解。 ... [详细]
author-avatar
qapo
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有