热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

[ARC101E]RibbonsonTree(容斥,dp)

Description给定一棵有$n$个节点的树,满足$n$为偶数。初始时,每条边都为白色。现在请你将这些点两两配对成$\frac{n}{2}$个无序点对。每个点对之间的的路径都会

Description

给定一棵有 \(n\) 个节点的树,满足 \(n\) 为偶数。初始时,每条边都为白色。

现在请你将这些点两两配对成 \(\frac{n}{2}\) 个无序点对。每个点对之间的的路径都会被染成黑色

求有多少种配对方案,使得树上没有白边?

\(n\le 5000\)


Solution


法一:

树上的路径很难直接考虑。

有一种容斥的做法:记边集为 E ,枚举 T 子集中的边强制为白边,其余的不作限制, 那么:

\[
Ans = \sum_{T\subseteq E} (-1) ^ {T} F(T)
\]

\(F(T)\) 为强制 T 的边为白边的方案数。

把 T 删掉后不难发现树变成了若干个联通块,显然这若干个连通块是独立的。

对于一个大小为 n 的连通块,两点随便配对的方案数是 \((n - 1) * (n - 3) * \cdots * 1\),记为 \(g(n)\)

然而暴力枚举 T 复杂度过高,考虑树型 dp ,需要知道的状态是 u 当前所在联通块大小以及容斥系数(即 T 的奇偶)。

\(dp[u][i][0/1]\) 为 u 子树内,u 所在联通块大小为 i ,T 的奇偶性是 0 / 1 的方案数。

转移就合并 u 的子树 v ,同时考虑 这条边是否选入 T 集合,有点做 01 背包的感觉。

\[
dp[v][i][a]\times dp[u][i][b] \rightarrow dp'[u][i + j][a\oplus b]\dp[v][j][a]\times dp[u][i][b]\times g[i] \rightarrow dp'[u][i][a\oplus b\oplus 1]
\]

最后答案就是 \(|T|\) 为偶数的 - \(|T|\) 为奇数的。

\[
Ans = \sum_{i = 1} ^ n (dp[root][i][0] - dp[root][i][1]) \times g[i]
\]

#include
#include
#include
#include
#include
using namespace std;
#define End exit(0)
#define LL long long
#define mp make_pair
#define SZ(x) ((int) x.size())
#define GO cerr <<"GO" <#define DE(x) cout <<#x <<" = " <#define DEBUG(...) fprintf(stderr, __VA_ARGS__)
void proc_status()
{
freopen("/proc/self/status","r",stdin);
string s; while(getline(cin, s)) if (s[2] == &#39;P&#39;) { cerr <}
template inline T read()
{
register T x = 0;
register char c; register int f(1);
while (!isdigit(c = getchar())) if (c == &#39;-&#39;) f = -1;
while (x = (x <<1) + (x <<3) + (c ^ 48), isdigit(c = getchar()));
return x * f;
}
template inline bool chkmin(T &a,T b) { return a > b ? a = b, 1 : 0; }
template inline bool chkmax(T &a,T b) { return a const int maxN = 5000 + 2;
const int mod = 1e9 + 7;
vector adj[maxN + 2];
int g[maxN + 2], n, size[maxN + 2];
int dp[maxN + 2][maxN + 2][2];
void input()
{
n = read();
for (int i = 1; i {
int u = read(), v = read();
adj[u].push_back(v), adj[v].push_back(u);
}
}
void dfs(int u, int f)
{
static int tmp[maxN + 2][2];
size[u] = 1;
dp[u][1][0] = 1;
for (int v : adj[u])
if (v != f)
{
dfs(v, u);
for (int i = 0; i <= size[u]; ++i)
for (int j = 0; j <= size[v]; ++j)
for (int a = 0; a <2; ++a)
for (int b = 0; b <2; ++b)
{
(tmp[i + j][a ^ b] += (LL) dp[v][j][a] * dp[u][i][b] % mod) %= mod;
if (!(j & 1))
(tmp[i][a ^ b ^ 1] += (LL) dp[v][j][a] * dp[u][i][b] % mod * g[j] % mod) %= mod;
}
size[u] += size[v];
for (int i = 0; i <= size[u]; ++i)
for (int j = 0; j <2; ++j)
dp[u][i][j] = tmp[i][j], tmp[i][j] = 0;
}
}
void solve()
{
g[0] = 1;
for (int i = 2; i <= n; i += 2) g[i] = (LL) g[i - 2] * (i - 1) % mod;
dfs(1, 0);
int ans = 0;
for (int i = 1; i <= n; ++i)
(ans += ((LL) dp[1][i][0] - dp[1][i][1] + mod) * g[i] % mod) %= mod;
cout <}
int main()
{
#ifndef ONLINE_JUDGE
freopen("xhc2.in", "r", stdin);
freopen("xhc2.out", "w", stdout);
#endif
input();
solve();
return 0;
}

法二:

还是基于上面的容斥。

\(dp[u][i]\) 为 u 子树内还有 i 个点没有匹配,但考虑了容斥系数的答案。

合并子树后注意下 \(dp[u][0]\) 的转移要乘以 -1 的容斥系数(根除外)

#include
#include
#include
#include
#include
using namespace std;
#define End exit(0)
#define LL long long
#define mp make_pair
#define SZ(x) ((int) x.size())
#define GO cerr <<"GO" <#define DE(x) cout <<#x <<" = " <#define DEBUG(...) fprintf(stderr, __VA_ARGS__)
void proc_status()
{
freopen("/proc/self/status","r",stdin);
string s; while(getline(cin, s)) if (s[2] == &#39;P&#39;) { cerr <}
template inline T read()
{
register T x = 0;
register char c; register int f(1);
while (!isdigit(c = getchar())) if (c == &#39;-&#39;) f = -1;
while (x = (x <<1) + (x <<3) + (c ^ 48), isdigit(c = getchar()));
return x * f;
}
template inline bool chkmin(T &a,T b) { return a > b ? a = b, 1 : 0; }
template inline bool chkmax(T &a,T b) { return a const int maxN = 5000 + 2;
const int mod = 1e9 + 7;
int n;
int ver[maxN <<1], nxt[maxN <<1], head[maxN + 2];
int dp[maxN + 2][maxN + 2], tmp[maxN + 2], size[maxN + 2], g[maxN + 2];
inline void Inc(int &x) { x <0 ? x += mod : 0; }
inline void Dec(int &x) { x >= mod ? x -= mod : 0; }
void link(int u, int v)
{
static int ecnt = 0;
ver[++ecnt] = v, nxt[ecnt] = head[u], head[u] = ecnt;
}
void dfs(int u, int fa)
{
dp[u][1] = 1;
size[u] = 1;
for (int i = head[u]; i; i = nxt[i])
{
int v = ver[i];
if (v == fa) continue;
dfs(v, u);
for (int i = 0; i <= size[u]; ++i)
for (int j = 0; j <= size[v]; ++j)
Dec(tmp[i + j] += 1ll * dp[u][i] * dp[v][j] % mod);
size[u] += size[v];
for (int i = 0; i <= size[u]; ++i) dp[u][i] = tmp[i], tmp[i] = 0;
}
for (int i = 1; i <= size[u]; ++i) Inc(dp[u][0] -= 1ll * dp[u][i] * g[i] % mod);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("xhc.in", "r", stdin);
freopen("xhc.out", "w", stdout);
#endif
n = read();
for (int i = 1; i {
int u = read(), v = read();
link(u, v), link(v, u);
}
g[0] = 1;
for (int i = 2; i <= n; ++i) g[i] = 1ll * g[i - 2] * (i - 1) % mod;
dfs(1, 0);
printf("%d\n", (mod - dp[1][0]) % mod);
return 0;
}


推荐阅读
  • 动态规划算法的基本步骤及最长递增子序列问题详解
    本文详细介绍了动态规划算法的基本步骤,包括划分阶段、选择状态、决策和状态转移方程,并以最长递增子序列问题为例进行了详细解析。动态规划算法的有效性依赖于问题本身所具有的最优子结构性质和子问题重叠性质。通过将子问题的解保存在一个表中,在以后尽可能多地利用这些子问题的解,从而提高算法的效率。 ... [详细]
  • HDU 2372 El Dorado(DP)的最长上升子序列长度求解方法
    本文介绍了解决HDU 2372 El Dorado问题的一种动态规划方法,通过循环k的方式求解最长上升子序列的长度。具体实现过程包括初始化dp数组、读取数列、计算最长上升子序列长度等步骤。 ... [详细]
  • 本文介绍了lua语言中闭包的特性及其在模式匹配、日期处理、编译和模块化等方面的应用。lua中的闭包是严格遵循词法定界的第一类值,函数可以作为变量自由传递,也可以作为参数传递给其他函数。这些特性使得lua语言具有极大的灵活性,为程序开发带来了便利。 ... [详细]
  • 本文介绍了使用Java实现大数乘法的分治算法,包括输入数据的处理、普通大数乘法的结果和Karatsuba大数乘法的结果。通过改变long类型可以适应不同范围的大数乘法计算。 ... [详细]
  • 本文讨论了如何优化解决hdu 1003 java题目的动态规划方法,通过分析加法规则和最大和的性质,提出了一种优化的思路。具体方法是,当从1加到n为负时,即sum(1,n)sum(n,s),可以继续加法计算。同时,还考虑了两种特殊情况:都是负数的情况和有0的情况。最后,通过使用Scanner类来获取输入数据。 ... [详细]
  • 本文介绍了C#中数据集DataSet对象的使用及相关方法详解,包括DataSet对象的概述、与数据关系对象的互联、Rows集合和Columns集合的组成,以及DataSet对象常用的方法之一——Merge方法的使用。通过本文的阅读,读者可以了解到DataSet对象在C#中的重要性和使用方法。 ... [详细]
  • 本文介绍了OC学习笔记中的@property和@synthesize,包括属性的定义和合成的使用方法。通过示例代码详细讲解了@property和@synthesize的作用和用法。 ... [详细]
  • 本文详细介绍了Linux中进程控制块PCBtask_struct结构体的结构和作用,包括进程状态、进程号、待处理信号、进程地址空间、调度标志、锁深度、基本时间片、调度策略以及内存管理信息等方面的内容。阅读本文可以更加深入地了解Linux进程管理的原理和机制。 ... [详细]
  • 1,关于死锁的理解死锁,我们可以简单的理解为是两个线程同时使用同一资源,两个线程又得不到相应的资源而造成永无相互等待的情况。 2,模拟死锁背景介绍:我们创建一个朋友 ... [详细]
  • 《数据结构》学习笔记3——串匹配算法性能评估
    本文主要讨论串匹配算法的性能评估,包括模式匹配、字符种类数量、算法复杂度等内容。通过借助C++中的头文件和库,可以实现对串的匹配操作。其中蛮力算法的复杂度为O(m*n),通过随机取出长度为m的子串作为模式P,在文本T中进行匹配,统计平均复杂度。对于成功和失败的匹配分别进行测试,分析其平均复杂度。详情请参考相关学习资源。 ... [详细]
  • 本文内容为asp.net微信公众平台开发的目录汇总,包括数据库设计、多层架构框架搭建和入口实现、微信消息封装及反射赋值、关注事件、用户记录、回复文本消息、图文消息、服务搭建(接入)、自定义菜单等。同时提供了示例代码和相关的后台管理功能。内容涵盖了多个方面,适合综合运用。 ... [详细]
  • 知识图谱——机器大脑中的知识库
    本文介绍了知识图谱在机器大脑中的应用,以及搜索引擎在知识图谱方面的发展。以谷歌知识图谱为例,说明了知识图谱的智能化特点。通过搜索引擎用户可以获取更加智能化的答案,如搜索关键词"Marie Curie",会得到居里夫人的详细信息以及与之相关的历史人物。知识图谱的出现引起了搜索引擎行业的变革,不仅美国的微软必应,中国的百度、搜狗等搜索引擎公司也纷纷推出了自己的知识图谱。 ... [详细]
  • 本文讲述了作者通过点火测试男友的性格和承受能力,以考验婚姻问题。作者故意不安慰男友并再次点火,观察他的反应。这个行为是善意的玩人,旨在了解男友的性格和避免婚姻问题。 ... [详细]
  • 后台获取视图对应的字符串
    1.帮助类后台获取视图对应的字符串publicclassViewHelper{将View输出为字符串(注:不会执行对应的ac ... [详细]
  • 本文介绍了通过ABAP开发往外网发邮件的需求,并提供了配置和代码整理的资料。其中包括了配置SAP邮件服务器的步骤和ABAP写发送邮件代码的过程。通过RZ10配置参数和icm/server_port_1的设定,可以实现向Sap User和外部邮件发送邮件的功能。希望对需要的开发人员有帮助。摘要长度:184字。 ... [详细]
author-avatar
A-Alon_586
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有