热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

linux中断介绍(概念、顶半部和底半部、linux中断编程)

中断的概念:指CPU在执行过程中,出现某些突发事件急待处理,CPU暂停执行当前程序,转去处理突发事件,处理完后CPU又返回原程序被中断的

中断的概念:

指CPU在执行过程中,出现某些突发事件急待处理,CPU暂停执行当前程序,转去处理突发事件,处理完后CPU又返回原程序被中断的位置继续执行.

中断的分类:

内部中断:来自cpu内部(软件中断、cpu溢出、触发错误等)

外部中断:来自cpu外部,由外设触发

屏蔽中断和不可屏蔽中断

可屏蔽中断:可以通过屏蔽字被屏蔽,屏蔽后该中断不再触发响应

不可屏蔽中断:中断无法被屏蔽

向量中断和非向量中断

向量中断:cpu通常为不同中断分配不同中断号,当检测到某中断号的中断到来后,就自动跳转到与该中断好对应的地址执行

非向量中断:多个中断共享一个向量地址,进入该入口地址后再通过判断中断标志识别是哪个中断

也就是说向量中断由软件提供中断服务入口地址,非向量中断由软件提供中断入口地址

定时器中断原理

定时器再硬件上也可以用作中断,定时器接收一个时钟输入,当时钟脉冲来时,当前计数加1,并和预先设置的计数比较,如果相等,证明计数周期满,产生定时器中断,并复位计数值

linux中断处理程序架构

设备的中断会打断内核中进程的调度和运行,所以系统希望中断服务程序尽可能短小精悍,但是实际上中断到来时要完成的工作并不会是短小的,可能包含大量的耗时处理,为了平衡这2个要求,把中断分为2个半部

linux将中断分为:顶半部和底半部

顶半部:完成尽可能少的比较紧急的任务,它往往只是简单的读取寄存器中的中断状态并清除中断标志后就进行

              ”登记中断“(也就是将底半部处理程序挂到设备的底半部执行队列中)的工作

特点:响应速度快

底半部:中断处理的大部分工作都在底半部,它几乎做了中断处理程序的所有事情、

特点:处理相对不是非常紧急的事情

那么对于一个中断,如何划分上下两部分呢?哪些处理放在上半部,哪些处理放在下半部?

1、任务对时间十分敏感,放上半部

2、任务和硬件相关,放上半部

3、任务需要保证不被其他中断打断,放上半部

4、其他所有任务放下半部

中断基础概念介绍完了,接下来介绍linux中断编程

linux中断编程

1、申请中断

/*
irq:要申请的中断号
handler:向系统登记的中断处理程序(顶半部),是一个回调函数,中断发生时,系统调用它,将dev_id参数传递 给它
irqflags:中断处理的属性,可以指定中断的触发方式和处理方式触发方式:IRQF_TRIGGER_RISING、IRQF_TRIGGER_FALLING、IRQF_TRIGGER_HIGH、IRQF_TRIGGER_LOW处理方式:IRQF_DISABLE表明中断处理程序是快速处理程序,快速处理程序被调用时屏蔽所有中断IRQF_SHARED表示多个设备共享中断
devname:设置中断名称,通常是设备驱动程序的名称 在cat /proc/interrupts中可以看到此名称
dev_id:中断共享时会用到,一般设置为NULL返回值: 为0表示成功,返回-EINVAL表示中断号无效,返回-EBUSY表示中断已经被占用,且不能共享
*/
int request_irq(unsigned int irq,irq_handler_t handler, unsigned long irqflags,const char *devname,void *dev_id)

2、释放中断

void free_irq(unsigned int irq,void *dev_id);

3、使能和屏蔽中断

void disable_irq(int irq); //等待目前中断处理完成(最好别在顶板部使用,你懂得)
void disable_irq_nosync(int irq); //立即返回
void enable_irq(int irq);//

4、屏蔽本CPU内所有中断

#define local_irq_save(flags) //禁止中断并保存状态
void local_irq_disable(void); //禁止中断,不保存状态

下面来分别介绍一下顶半部和底半部的实现机制

底半部机制:底半部机制主要有tasklet、工作队列和软中断

一、底半部实现方法之1---tasklet

1、我们需要定义tasklet机器处理器并将两者关联

例如:

void my_tasklet_func(unsigned long);/*定义一个处理函数*/

DECLARE_TASKLET(my_tasklet,my_tasklet_func,data);

/*上述代码定义了名为my_tasklet的tasklet并将其余

my_tasklet_func()函数绑定,传入的参数为data*/

2、调度

tasklet_schedule(&my_tasklet);

//使用此函数就能在是当的时候进行调度运行

/*tasklet使用模板*/

/*定义tasklet和底半部函数并关联*/
void xxx_do_tasklet(unsigned long);
DECLARE_TASKLET(xxx_tasklet,xxx_do_tasklet,0);/*中断处理底半部*/
void xxx_do_tasklet(unsigned long){...}/*中断处理顶半部*/
irqreturn_t xxx_interrupt(int irq,void *dev_id){...tasklet_schedule(&xxx_tasklet); //调度底半部...}/*设备驱动模块加载函数*/
int __init xxx_init(void){.../*申请中断*/result = request_irq(xxx_irq, xxx_interrupt, IRQF_DISABLED,"xxx",NULL);...return IRQ_HANDLED;}/*设备驱动模块卸载函数*/
void __exit xxx_exit(void){.../*释放中断*/
free_irq(xxx_irq,xxx_interrupt);...}

二、底半部实现方法之2---工作队列

使用方法和tasklet类似

相关操作:

struct work_struct my_wq;    /*定义一个工作队列*/

void my_wq_func(unsigned long);/*定义一个处理函数*/

通过INIT_WORK()可以初始化这个工作队列并将工作队列与处理函数绑定

INIT_WORK(&my_wq,(void (*)(void *))my_wq_func,NULL);

/*初始化工作队列并将其与处理函数绑定*/

schedule_work(&my_wq);/*调度工作队列执行*/

/*工作队列使用模板*/

/*定义工作队列和关联函数*/
struct work_struct(unsigned long);
void xxx_do_work(unsigned long);/*中断处理底半部*/
void xxx_do_work(unsigned long)
{
...
}/*中断处理顶半部*/
irqreturn_t xxx_interrupt(int irq,void *dev_id)
{
...schedule_work(&my_wq); //调度底半部
...return IRQ_HANDLED;
}/*设备驱动模块加载函数*/
int xxx_init(void)
{
.../*申请中断*/result = request_irq(xxx_irq, xxx_interrupt, IRQF_DISABLED,"xxx",NULL);
.../*初始化工作队列*/INIT_WORK(&my_wq,(void (*)(void *))xxx_do_work,NULL);
}/*设备驱动模块卸载函数*/
void xxx_exit(void)
{
.../*释放中断*/free_irq(xxx_irq,xxx_interrupt);
...
}

三、底半部实现方法之2---软中断

中断是一组静态定义的下半部接口,有 32 个,可以在所有处理器上同时执行,类型相同也可以;在编译时静态注册。
软中断的相关函数:


  • 注册软中断 open_softirq
  • 触发软中断 raise_softirq
  • 执行软中断 do_softirq

各种机制的比较


下半部上下文顺序执行保障
软中断中断随意,同类型都可以在不同处理器同时执行,一般给对时间要求严格的下半部使用
tasklet中断同类型不能同时执行
工作队列进程不保障,可能被调度和抢占

  

中断共享

中断共享是指多个设备共享一根中断线的情况

中断共享的使用方法:

(1).在申请中断时,使用IRQF_SHARED标识

(2).在中断到来时,会遍历共享此中断的所有中断处理程序,直到某一个函数返回

IRQ_HANDLED,在中断处理程序顶半部中,应迅速根据硬件寄存器中的信息参照dev_id参数,判断是否为本设备的中断,若不是立即返回IR1_NONE

/*共享中断编程模板*/

/*中断处理顶半部*/
irqreturn_t xxx_interrupt(int irq,void *dev_id,struct pt_regs *regs)
{
...int status = read_int_status();/*获知中断源*/if(!is_myint(dev_id,status))/*判断是否为本设备中断*/return IRQ_NONE;/*不是本设备中断,立即返回*//*是本设备中断,进行处理*/
...
return IRQ_HANDLED;/*返回IRQ_HANDLER表明中断已经被处理*/}/*设备模块加载函数*/
int xxx_init(void)
{
.../*申请共享中断*/result = request_irq(sh_irq, xxx_interrupt, IRQF_SHARE,"xxx", xxx_dev);
...
}/*设备驱动模块卸载函数*/
void xxx_exit()
{
.../*释放中断*/free_irq(xxx_irq,xxx_interrupt);
...
}


推荐阅读
  • 本文介绍了深入浅出Linux设备驱动编程的重要性,以及两种加载和删除Linux内核模块的方法。通过一个内核模块的例子,展示了模块的编译和加载过程,并讨论了模块对内核大小的控制。深入理解Linux设备驱动编程对于开发者来说非常重要。 ... [详细]
  • 计算机存储系统的层次结构及其优势
    本文介绍了计算机存储系统的层次结构,包括高速缓存、主存储器和辅助存储器三个层次。通过分层存储数据可以提高程序的执行效率。计算机存储系统的层次结构将各种不同存储容量、存取速度和价格的存储器有机组合成整体,形成可寻址存储空间比主存储器空间大得多的存储整体。由于辅助存储器容量大、价格低,使得整体存储系统的平均价格降低。同时,高速缓存的存取速度可以和CPU的工作速度相匹配,进一步提高程序执行效率。 ... [详细]
  • 本文讨论了clone的fork与pthread_create创建线程的不同之处。进程是一个指令执行流及其执行环境,其执行环境是一个系统资源的集合。在调用系统调用fork创建一个进程时,子进程只是完全复制父进程的资源,这样得到的子进程独立于父进程,具有良好的并发性。但是二者之间的通讯需要通过专门的通讯机制,另外通过fork创建子进程系统开销很大。因此,在某些情况下,使用clone或pthread_create创建线程可能更加高效。 ... [详细]
  • 本文介绍了Python高级网络编程及TCP/IP协议簇的OSI七层模型。首先简单介绍了七层模型的各层及其封装解封装过程。然后讨论了程序开发中涉及到的网络通信内容,主要包括TCP协议、UDP协议和IPV4协议。最后还介绍了socket编程、聊天socket实现、远程执行命令、上传文件、socketserver及其源码分析等相关内容。 ... [详细]
  • 本文介绍了基于c语言的mcs51单片机定时器计数器的应用教程,包括定时器的设置和计数方法,以及中断函数的使用。同时介绍了定时器应用的举例,包括定时器中断函数的编写和频率值的计算方法。主函数中设置了T0模式和T1计数的初值,并开启了T0和T1的中断,最后启动了CPU中断。 ... [详细]
  • 本文详细介绍了Linux中进程控制块PCBtask_struct结构体的结构和作用,包括进程状态、进程号、待处理信号、进程地址空间、调度标志、锁深度、基本时间片、调度策略以及内存管理信息等方面的内容。阅读本文可以更加深入地了解Linux进程管理的原理和机制。 ... [详细]
  • 图解redis的持久化存储机制RDB和AOF的原理和优缺点
    本文通过图解的方式介绍了redis的持久化存储机制RDB和AOF的原理和优缺点。RDB是将redis内存中的数据保存为快照文件,恢复速度较快但不支持拉链式快照。AOF是将操作日志保存到磁盘,实时存储数据但恢复速度较慢。文章详细分析了两种机制的优缺点,帮助读者更好地理解redis的持久化存储策略。 ... [详细]
  • Linux环境变量函数getenv、putenv、setenv和unsetenv详解
    本文详细解释了Linux中的环境变量函数getenv、putenv、setenv和unsetenv的用法和功能。通过使用这些函数,可以获取、设置和删除环境变量的值。同时给出了相应的函数原型、参数说明和返回值。通过示例代码演示了如何使用getenv函数获取环境变量的值,并打印出来。 ... [详细]
  • C++字符字符串处理及字符集编码方案
    本文介绍了C++中字符字符串处理的问题,并详细解释了字符集编码方案,包括UNICODE、Windows apps采用的UTF-16编码、ASCII、SBCS和DBCS编码方案。同时说明了ANSI C标准和Windows中的字符/字符串数据类型实现。文章还提到了在编译时需要定义UNICODE宏以支持unicode编码,否则将使用windows code page编译。最后,给出了相关的头文件和数据类型定义。 ... [详细]
  • Java在运行已编译完成的类时,是通过java虚拟机来装载和执行的,java虚拟机通过操作系统命令JAVA_HOMEbinjava–option来启 ... [详细]
  • 本文介绍了2020年计算机二级MSOffice的选择习题及答案,详细解析了操作系统的五大功能模块,包括处理器管理、作业管理、存储器管理、设备管理和文件管理。同时,还解答了算法的有穷性的含义。 ... [详细]
  • Java中包装类的设计原因以及操作方法
    本文主要介绍了Java中设计包装类的原因以及操作方法。在Java中,除了对象类型,还有八大基本类型,为了将基本类型转换成对象,Java引入了包装类。文章通过介绍包装类的定义和实现,解答了为什么需要包装类的问题,并提供了简单易用的操作方法。通过本文的学习,读者可以更好地理解和应用Java中的包装类。 ... [详细]
  • 本文介绍了解决二叉树层序创建问题的方法。通过使用队列结构体和二叉树结构体,实现了入队和出队操作,并提供了判断队列是否为空的函数。详细介绍了解决该问题的步骤和流程。 ... [详细]
  • 栈和队列的共同处和不同处
    本文主要介绍了栈和队列的共同处和不同处。栈和队列都是由几个数据特性相同的元素组成的有限序列,也就是线性表。队列是限定仅在表的一端插入元素、在另一端删除元素的线性表,遵循先进先出的原则。栈是限定仅在表尾进行插入或删除操作的线性表,遵循后进先出的原则。 ... [详细]
  • 深入理解Kafka服务端请求队列中请求的处理
    本文深入分析了Kafka服务端请求队列中请求的处理过程,详细介绍了请求的封装和放入请求队列的过程,以及处理请求的线程池的创建和容量设置。通过场景分析、图示说明和源码分析,帮助读者更好地理解Kafka服务端的工作原理。 ... [详细]
author-avatar
另一种Xing福_290
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有