热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

深入浅出Linux设备驱动中断处理介绍

文章标题:深入浅出Linux设备驱动中断处理介绍。Linux是中国IT实验室的一个技术频道。包含桌面应用,Linux系统管理,内核研究,嵌入式系统和开源等一些基本分类

与Linux设备驱动中中断处理相关的首先是申请与释放IRQ的API: request_irq()和free_irq()。

request_irq()的原型为:

int request_irq(unsigned int irq,
void (*handler)(int irq, void *dev_id, struct pt_regs *regs),
unsigned long irqflags,
const char * devname,
                        void *dev_id);

irq是要申请的硬件中断号;

handler是向系统登记的中断处理函数,是一个回调函数,中断发生时,系统调用这个函数,dev_id参数将被传递;

irqflags是中断处理的属性,若设置SA_INTERRUPT,标明中断处理程序是快速处理程序,快速处理程序被调用时屏蔽所有中断,慢速处理程序不屏蔽;若设置SA_SHIRQ,则多个设备共享中断,dev_id在中断共享时会用到,一般设置为这个设备的device结构本身或者NULL。

free_irq()的原型为:

void free_irq(unsigned int irq,void *dev_id);

另外,与Linux中断息息相关的一个重要概念是Linux中断分为两个半部:上半部(tophalf)和下半部(bottom half)。上半部的功能是"登记中断",当一个中断发生时,它进行相应地硬件读写后就把中断例程的下半部挂到该设备的下半部执行队列中去。因此,上半部执行的速度就会很快,可以服务更多的中断请求。但是,仅有"登记中断"是远远不够的,因为中断的事件可能很复杂。因此,Linux引入了一个下半部,来完成中断事件的绝大多数使命。下半部和上半部最大的不同是下半部是可中断的,而上半部是不可中断的,下半部几乎做了中断处理程序所有的事情,而且可以被新的中断打断!下半部则相对来说并不是非常紧急的,通常还是比较耗时的,因此由系统自行安排运行时机,不在中断服务上下文中执行。

Linux实现下半部的机制主要有tasklet和工作队列。

tasklet基于Linux softirq,其使用相当简单,我们只需要定义tasklet及其处理函数并将二者关联:

void my_tasklet_func(unsigned long); //定义一个处理函数:

DECLARE_TASKLET(my_tasklet,my_tasklet_func,data); //定义一个tasklet结构my_tasklet,与my_tasklet_func(data)函数相关联

然后,在需要调度tasklet的时候引用一个简单的API就能使系统在适当的时候进行调度运行:

tasklet_schedule(&my_tasklet);

此外,Linux还提供了另外一些其它的控制tasklet调度与运行的API:

DECLARE_TASKLET_DISABLED(name,function,data); //与DECLARE_TASKLET类似,但等待tasklet被使能 tasklet_enable(struct tasklet_struct *); //使能tasklet tasklet_disble(struct tasklet_struct *); //禁用tasklet tasklet_init(struct tasklet_struct *,void (*func)(unsigned long),unsigned long); //类似DECLARE_TASKLET() tasklet_kill(struct tasklet_struct *); // 清除指定tasklet的可调度位,即不允许调度该tasklet

我们先来看一个tasklet的运行实例,这个实例没有任何实际意义,仅仅为了演示。它的功能是:在globalvar被写入一次后,就调度一个tasklet,函数中输出"tasklet is executing":

#include … //定义与绑定tasklet函数 void test_tasklet_action(unsigned long t); DECLARE_TASKLET(test_tasklet, test_tasklet_action, 0); void test_tasklet_action(unsigned long t) {  printk("tasklet is executing\n"); } … ssize_t globalvar_write(struct file *filp, const char *buf, size_t len, loff_t *off) {  …  if (copy_from_user(&global_var, buf, sizeof(int)))  {   return - EFAULT;  }  //调度tasklet执行 tasklet_schedule(&test_tasklet);  return sizeof(int); }

由于中断与真实的硬件息息相关,脱离硬件而空谈中断是毫无意义的,我们还是来举一个简单的例子。这个例子来源于SAMSUNG S3C2410嵌入式系统实例,看看其中实时钟的驱动中与中断相关的部分:

static struct fasync_struct *rtc_async_queue;
static int __init rtc_init(void)
{
 misc_register(&rtc_dev);
 create_proc_read_entry("driver/rtc", 0, 0, rtc_read_proc, NULL);
 #if RTC_IRQ
  if (rtc_has_irq == 0)
   goto no_irq2;
  init_timer(&rtc_irq_timer);
  rtc_irq_timer.function = rtc_dropped_irq;
  spin_lock_irq(&rtc_lock);
  /* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
  CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) &0xF0) | 0x06), RTC_FREQ_SELECT);
  spin_unlock_irq(&rtc_lock);
  rtc_freq = 1024;
  no_irq2:
 #endif
 printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
 return 0;
}
static void __exit rtc_exit(void)
{
 remove_proc_entry("driver/rtc", NULL);
 misc_deregister(&rtc_dev);
 release_region(RTC_PORT(0), RTC_IO_EXTENT);
 if (rtc_has_irq)
  free_irq(RTC_IRQ, NULL);
}
static void rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
 /*
 * Can be an alarm interrupt, update complete interrupt,
 * or a periodic interrupt. We store the status in the
 * low byte and the number of interrupts received since
 * the last read in the remainder of rtc_irq_data.
 */
 spin_lock(&rtc_lock);
 rtc_irq_data += 0x100;
 rtc_irq_data &= ~0xff;
 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) &0xF0);
 if (rtc_status &RTC_TIMER_ON)
  mod_timer(&rtc_irq_timer, jiffies + HZ / rtc_freq + 2 * HZ / 100);
 spin_unlock(&rtc_lock);
 /* Now do the rest of the actions */
 wake_up_interruptible(&rtc_wait);
 kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
}
static int rtc_fasync (int fd, struct file *filp, int on)
{
 return fasync_helper (fd, filp, on, &rtc_async_queue);
}
static void rtc_dropped_irq(unsigned long data)
{
 unsigned long freq;
 spin_lock_irq(&rtc_lock);
 /* Just in case someone disabled the timer from behind our back... */
 if (rtc_status &RTC_TIMER_ON)
  mod_timer(&rtc_irq_timer, jiffies + HZ / rtc_freq + 2 * HZ / 100);
 rtc_irq_data += ((rtc_freq / HZ) <<8);
 rtc_irq_data &= ~0xff;
 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) &0xF0); /* restart */
 freq = rtc_freq;
 spin_unlock_irq(&rtc_lock);
 printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq);
 /* Now we have new data */
 wake_up_interruptible(&rtc_wait);
 kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
                        }

RTC中断发生后,激发了一个异步信号,因此本驱动程序提供了对第6节异步信号的支持。并不是每个中断都需要一个下半部,如果本身要处理的事情并不复杂,可能只有一个上半部,本例中的RTC驱动就是如此。


推荐阅读
  • 在Docker中,将主机目录挂载到容器中作为volume使用时,常常会遇到文件权限问题。这是因为容器内外的UID不同所导致的。本文介绍了解决这个问题的方法,包括使用gosu和suexec工具以及在Dockerfile中配置volume的权限。通过这些方法,可以避免在使用Docker时出现无写权限的情况。 ... [详细]
  • 学习SLAM的女生,很酷
    本文介绍了学习SLAM的女生的故事,她们选择SLAM作为研究方向,面临各种学习挑战,但坚持不懈,最终获得成功。文章鼓励未来想走科研道路的女生勇敢追求自己的梦想,同时提到了一位正在英国攻读硕士学位的女生与SLAM结缘的经历。 ... [详细]
  • 本文介绍了数据库的存储结构及其重要性,强调了关系数据库范例中将逻辑存储与物理存储分开的必要性。通过逻辑结构和物理结构的分离,可以实现对物理存储的重新组织和数据库的迁移,而应用程序不会察觉到任何更改。文章还展示了Oracle数据库的逻辑结构和物理结构,并介绍了表空间的概念和作用。 ... [详细]
  • 2018年人工智能大数据的爆发,学Java还是Python?
    本文介绍了2018年人工智能大数据的爆发以及学习Java和Python的相关知识。在人工智能和大数据时代,Java和Python这两门编程语言都很优秀且火爆。选择学习哪门语言要根据个人兴趣爱好来决定。Python是一门拥有简洁语法的高级编程语言,容易上手。其特色之一是强制使用空白符作为语句缩进,使得新手可以快速上手。目前,Python在人工智能领域有着广泛的应用。如果对Java、Python或大数据感兴趣,欢迎加入qq群458345782。 ... [详细]
  • 一、Hadoop来历Hadoop的思想来源于Google在做搜索引擎的时候出现一个很大的问题就是这么多网页我如何才能以最快的速度来搜索到,由于这个问题Google发明 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • Iamtryingtomakeaclassthatwillreadatextfileofnamesintoanarray,thenreturnthatarra ... [详细]
  • 本文介绍了brain的意思、读音、翻译、用法、发音、词组、同反义词等内容,以及脑新东方在线英语词典的相关信息。还包括了brain的词汇搭配、形容词和名词的用法,以及与brain相关的短语和词组。此外,还介绍了与brain相关的医学术语和智囊团等相关内容。 ... [详细]
  • 云原生边缘计算之KubeEdge简介及功能特点
    本文介绍了云原生边缘计算中的KubeEdge系统,该系统是一个开源系统,用于将容器化应用程序编排功能扩展到Edge的主机。它基于Kubernetes构建,并为网络应用程序提供基础架构支持。同时,KubeEdge具有离线模式、基于Kubernetes的节点、群集、应用程序和设备管理、资源优化等特点。此外,KubeEdge还支持跨平台工作,在私有、公共和混合云中都可以运行。同时,KubeEdge还提供数据管理和数据分析管道引擎的支持。最后,本文还介绍了KubeEdge系统生成证书的方法。 ... [详细]
  • Echarts图表重复加载、axis重复多次请求问题解决记录
    文章目录1.需求描述2.问题描述正常状态:问题状态:3.解决方法1.需求描述使用Echats实现了一个中国地图:通过选择查询周期&#x ... [详细]
  • 本文介绍了设计师伊振华受邀参与沈阳市智慧城市运行管理中心项目的整体设计,并以数字赋能和创新驱动高质量发展的理念,建设了集成、智慧、高效的一体化城市综合管理平台,促进了城市的数字化转型。该中心被称为当代城市的智能心脏,为沈阳市的智慧城市建设做出了重要贡献。 ... [详细]
  • IhaveconfiguredanactionforaremotenotificationwhenitarrivestomyiOsapp.Iwanttwodiff ... [详细]
  • Python字典推导式及循环列表生成字典方法
    本文介绍了Python中使用字典推导式和循环列表生成字典的方法,包括通过循环列表生成相应的字典,并给出了执行结果。详细讲解了代码实现过程。 ... [详细]
  • 本文讨论了在Windows 8上安装gvim中插件时出现的错误加载问题。作者将EasyMotion插件放在了正确的位置,但加载时却出现了错误。作者提供了下载链接和之前放置插件的位置,并列出了出现的错误信息。 ... [详细]
  • CSS3选择器的使用方法详解,提高Web开发效率和精准度
    本文详细介绍了CSS3新增的选择器方法,包括属性选择器的使用。通过CSS3选择器,可以提高Web开发的效率和精准度,使得查找元素更加方便和快捷。同时,本文还对属性选择器的各种用法进行了详细解释,并给出了相应的代码示例。通过学习本文,读者可以更好地掌握CSS3选择器的使用方法,提升自己的Web开发能力。 ... [详细]
author-avatar
蓬从蓉Tahirah
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有