热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

js迪杰斯特拉算法求最短路径

 1.后台生成矩阵名词解释和下图参考:https:blog.csdn.netcsdnxcnarticledetails80057574 double[,]arrnewdouble[

 

1.后台生成矩阵

名词解释和下图参考:https://blog.csdn.net/csdnxcn/article/details/80057574

js迪杰斯特拉算法求最短路径

 

double[,] arr = new double[allVertices.Count(), allVertices.Count()]; //矩阵 

//allVertices所有三维坐标点的集合

js迪杰斯特拉算法求最短路径

//lines 所有两点的连线

js迪杰斯特拉算法求最短路径

 

 

for (int i = 0; i {
for (int j = 0; j {
var start1 = allVertices[i].Point; //起点
var end1 = allVertices[j].Point; //终点
//lines 两点的连线集合
var line = lines.FirstOrDefault(ee => (ee.StartPoint == start1 && ee.EndPoint == end1)|| (ee.StartPoint == end1 && ee.EndPoint == start1/*起点终点互换*/));
if (start1 == end1)
{//同一个点
arr[i, j] = 0;
}
else
{
if (line != null)
{
arr[i, j] = double.Parse(line.Remark); //长度
}
else
{//两点未连接 此路不通
arr[i, j] =1.0/0.0; //Infinity
}
}
}
}

return arr;

2.dijkstra算法

/**
* Dijkstra算法
*
* @author wupanpan@baidu.com
* @date 2014-03-26
*/

/**
* @const
*/
var POS_INFINITY = Infinity;

/**
* @param {number} sourceV 源点的索引,从0开始
* @param {Array} adjMatrix 图的邻接矩阵,是一个二维数组
*/

function dijkstra(sourceV, adjMatrix) {
var set = [],
path = [],

dist = [];
distCopy = [],
vertexNum = adjMatrix.length;

var temp, u,
count = 0;

// 初始化
for (var i = 0; i distCopy[i] = dist[i] = POS_INFINITY;
set[i] = false;
}
distCopy[sourceV] = dist[sourceV] = 0;

while (count u = distCopy.indexOf(Math.min.apply(Math, distCopy));
set[u] = true;
distCopy[u] = POS_INFINITY;

for (var i = 0; i if (!set[i] && ((temp = dist[u] + adjMatrix[u][i]) distCopy[i] = dist[i] = temp;
path[i] = u;
}
}
count++;
}

return {
path: path,
dist: dist
};
}

/**
* @param {number} v 源点索引, 从0开始
* @param {number} d 非源点索引, 从0开始
* @param {Array} adjMatrix 图的邻接矩阵,是一个二维数组
*/
function searchPath(v, d, adjMatrix) {
var graph = dijkstra(v, adjMatrix),
path = graph.path,
dist = graph.dist;

var prev = path[d],
queue = [],
str = '';

queue.push(d);
while(prev != v) {
queue.push(prev);
prev = path[prev];
}
queue.push(v);

for (var j = queue.length - 1; j >= 0; j--) {
str +=queue.pop() + '->';
}
console.log('path',str);
var arr=str.split('->');
if(str.endsWith('->')){
arr.pop();
}
var rarr=[];//字符串数组转int数组
for(var i=0;i rarr.push(parseInt(arr[i]));
}
return rarr;
}


/**
* 测试数据
*/
var adjM = [
[0, 4, 2, POS_INFINITY, POS_INFINITY, POS_INFINITY],
[4, 0, 1, 5, POS_INFINITY, POS_INFINITY],
[2, 1, 0, 8, 10, POS_INFINITY],
[POS_INFINITY, 5, 8, 0, 2, 6],
[POS_INFINITY, POS_INFINITY, 10, 2, 0, 3],
[POS_INFINITY, POS_INFINITY, POS_INFINITY, 6, 3, 0]
];

3.使用算法求最短路径

js迪杰斯特拉算法求最短路径

 

5个点坐标如上图 虚线表示两点相连

1:  0,0,0
2:  1,1,0
3:  -1,-1,0
4:  2,0,0
5:  0,-1,0

 

请求后台生成的矩阵为:

var pathMatrix = [
[
0,
1.73,
1.73,
"Infinity",
1
],
[
1.73,
0,
"Infinity",
1.73,
"Infinity"
],
[
1.73,
"Infinity",
0,
"Infinity",
"Infinity"
],
[
"Infinity",
1.73,
"Infinity",
0,
2.23
],
[
1,
"Infinity",
"Infinity",
2.23,
0
]
];

var ret = searchPath(4, 1, pathMatrix); //从第5点到第2点的最短路径
console.log('index', ret);

 js迪杰斯特拉算法求最短路径(索引从0开始,对应到图上是 5->1->2)

 4.使用threejs画出路径

(黑色连线;  红绿蓝为xyz辅助线)

js迪杰斯特拉算法求最短路径

 

geometryPoint = new THREE.BoxGeometry(0.2, 0.2, 0.2);
var materialPoint = new THREE.MeshBasicMaterial({
color: 0xff00ff,
side: THREE.DoubleSide
});
circlePoint1 = new THREE.Mesh(geometryPoint, materialPoint);
circlePoint1.position.set(0, 0, 0);
scene.add(circlePoint1);

circlePoint2 = circlePoint1.clone();
circlePoint2.position.set(1, 1, 0);
scene.add(circlePoint2);

circlePoint3 = circlePoint1.clone();
circlePoint3.position.set(-1, 1, 0);
scene.add(circlePoint3);


circlePoint4 = circlePoint1.clone();
circlePoint4.position.set(2, 0, 0);
scene.add(circlePoint4);


circlePoint5 = circlePoint1.clone();
circlePoint5.position.set(0, -1, 0);
scene.add(circlePoint5);

scene.add(new THREE.AxesHelper(300));

//画路径

var ret = searchPath(4, 1, pathMatrix);   //从第5点到第2点的最短路径
console.log('index', ret);

var geometry1 = new THREE.Geometry();
for (var i = 0; i console.log("circlePoint" + (ret[i] + 1));
var pointObj = eval("circlePoint" + (ret[i] + 1));
console.log('position', pointObj.position);
geometry1.vertices.push(pointObj.position);
}
var line = new THREE.Line(geometry1, new THREE.LineBasicMaterial({
color: 'black'
}), THREE.LinePieces);
scene.add(line);

 

//补充

//threejs求三维两点的距离

var distance = circlePoint4.position.distanceTo(circlePoint5.position);
console.log(distance);

 

From:https://www.cnblogs.com/xuejianxiyang/p/9776319.html


推荐阅读
  • 本文介绍了PhysioNet网站提供的生理信号处理工具箱WFDB Toolbox for Matlab的安装和使用方法。通过下载并添加到Matlab路径中或直接在Matlab中输入相关内容,即可完成安装。该工具箱提供了一系列函数,可以方便地处理生理信号数据。详细的安装和使用方法可以参考本文内容。 ... [详细]
  • 阿里Treebased Deep Match(TDM) 学习笔记及技术发展回顾
    本文介绍了阿里Treebased Deep Match(TDM)的学习笔记,同时回顾了工业界技术发展的几代演进。从基于统计的启发式规则方法到基于内积模型的向量检索方法,再到引入复杂深度学习模型的下一代匹配技术。文章详细解释了基于统计的启发式规则方法和基于内积模型的向量检索方法的原理和应用,并介绍了TDM的背景和优势。最后,文章提到了向量距离和基于向量聚类的索引结构对于加速匹配效率的作用。本文对于理解TDM的学习过程和了解匹配技术的发展具有重要意义。 ... [详细]
  • vue使用
    关键词: ... [详细]
  • 本文介绍了闭包的定义和运转机制,重点解释了闭包如何能够接触外部函数的作用域中的变量。通过词法作用域的查找规则,闭包可以访问外部函数的作用域。同时还提到了闭包的作用和影响。 ... [详细]
  • 在Android开发中,使用Picasso库可以实现对网络图片的等比例缩放。本文介绍了使用Picasso库进行图片缩放的方法,并提供了具体的代码实现。通过获取图片的宽高,计算目标宽度和高度,并创建新图实现等比例缩放。 ... [详细]
  • 本文介绍了C#中生成随机数的三种方法,并分析了其中存在的问题。首先介绍了使用Random类生成随机数的默认方法,但在高并发情况下可能会出现重复的情况。接着通过循环生成了一系列随机数,进一步突显了这个问题。文章指出,随机数生成在任何编程语言中都是必备的功能,但Random类生成的随机数并不可靠。最后,提出了需要寻找其他可靠的随机数生成方法的建议。 ... [详细]
  • 图解redis的持久化存储机制RDB和AOF的原理和优缺点
    本文通过图解的方式介绍了redis的持久化存储机制RDB和AOF的原理和优缺点。RDB是将redis内存中的数据保存为快照文件,恢复速度较快但不支持拉链式快照。AOF是将操作日志保存到磁盘,实时存储数据但恢复速度较慢。文章详细分析了两种机制的优缺点,帮助读者更好地理解redis的持久化存储策略。 ... [详细]
  • [大整数乘法] java代码实现
    本文介绍了使用java代码实现大整数乘法的过程,同时也涉及到大整数加法和大整数减法的计算方法。通过分治算法来提高计算效率,并对算法的时间复杂度进行了研究。详细代码实现请参考文章链接。 ... [详细]
  • 本文介绍了lua语言中闭包的特性及其在模式匹配、日期处理、编译和模块化等方面的应用。lua中的闭包是严格遵循词法定界的第一类值,函数可以作为变量自由传递,也可以作为参数传递给其他函数。这些特性使得lua语言具有极大的灵活性,为程序开发带来了便利。 ... [详细]
  • EPICS Archiver Appliance存储waveform记录的尝试及资源需求分析
    本文介绍了EPICS Archiver Appliance存储waveform记录的尝试过程,并分析了其所需的资源容量。通过解决错误提示和调整内存大小,成功存储了波形数据。然后,讨论了储存环逐束团信号的意义,以及通过记录多圈的束团信号进行参数分析的可能性。波形数据的存储需求巨大,每天需要近250G,一年需要90T。然而,储存环逐束团信号具有重要意义,可以揭示出每个束团的纵向振荡频率和模式。 ... [详细]
  • 本文介绍了数据库的存储结构及其重要性,强调了关系数据库范例中将逻辑存储与物理存储分开的必要性。通过逻辑结构和物理结构的分离,可以实现对物理存储的重新组织和数据库的迁移,而应用程序不会察觉到任何更改。文章还展示了Oracle数据库的逻辑结构和物理结构,并介绍了表空间的概念和作用。 ... [详细]
  • IhaveconfiguredanactionforaremotenotificationwhenitarrivestomyiOsapp.Iwanttwodiff ... [详细]
  • ZSI.generate.Wsdl2PythonError: unsupported local simpleType restriction ... [详细]
  • XML介绍与使用的概述及标签规则
    本文介绍了XML的基本概念和用途,包括XML的可扩展性和标签的自定义特性。同时还详细解释了XML标签的规则,包括标签的尖括号和合法标识符的组成,标签必须成对出现的原则以及特殊标签的使用方法。通过本文的阅读,读者可以对XML的基本知识有一个全面的了解。 ... [详细]
  • 《数据结构》学习笔记3——串匹配算法性能评估
    本文主要讨论串匹配算法的性能评估,包括模式匹配、字符种类数量、算法复杂度等内容。通过借助C++中的头文件和库,可以实现对串的匹配操作。其中蛮力算法的复杂度为O(m*n),通过随机取出长度为m的子串作为模式P,在文本T中进行匹配,统计平均复杂度。对于成功和失败的匹配分别进行测试,分析其平均复杂度。详情请参考相关学习资源。 ... [详细]
author-avatar
浅笑那段情2502918773
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有