热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

centos7nodeexporter常用指标含义

node-exporter常用指标含义 https:www.gitbook.combooksongjiayangprometheusdetails (Prometheus实战) h


node-exporter常用指标含义

 

https://www.gitbook.com/book/songjiayang/prometheus/details (Prometheus 实战) 

https://github.com/1046102779/prometheus (Prometheus 非官方中文手册)

http://www.bubuko.com/infodetail-2004088.html (基于prometheus监控k8s集群)

http://www.cnblogs.com/sfnz/p/6566951.html (安装prometheus+grafana监控mysql redis kubernetes等,非docker安装)

https://github.com/kayrus/prometheus-kubernetes (prometheus-kubernetes) 

 

https://github.com/prometheus/node_exporter (prometheus/node_exporter)

http://dockone.io/article/2579 ( Prometheus在Kubernetes下的监控实践)

 

https://github.com/prometheus/prometheus/releases (prometheus 下载列表)

https://github.com/prometheus/node_exporter/releases/ (node_exporter下载列表)

 

 

 

前提概念:

1.时间序列是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列

2.     

=:选择正好相等的字符串标签

!=:选择不相等的字符串标签

=~:选择匹配正则表达式的标签(或子标签)

!~:选择不匹配正则表达式的标签(或子标签)

3.

s:seconds

m:minutes

h:hours

d:days

w:weeks

y:years

       注: [5m]指过去的5分钟内

4.操作符

bool

and

or

unless

on

without : without(label)在结果中移除括号内的标签和值

by : by(label)在结果中只保留括号内的标签和值

 

1.CPU空闲率

sum(irate(node_cpu{mode="idle", instance="134node"}[1m])) * 100 / count_scalar(node_cpu{mode="user", instance="134node"})

注释:

## instance:指的是label,具体根据实际配置,也可用正则匹配

## mode :      指cpu模式,node-exporter已经抓取出来,可以在node-exporter部署ip:9100这个网址上查看

                    例如:http://172.17.123.134:9100/metrics

## sum()函数: 指将括号内的指标值求和

## irate()函数: 指计算范围向量中时间序列的每秒钟的瞬时(per-second)速度(calculates the 

                          per-second instant rate of increase of the time series in the range vector)

## count_scalar()函数 : 指将时间序列向量中的元素个数作为标量返回(returns the number of     

                                      elements in a time series vector as a scalar)

 

2.CPU负载率

node_load1{instance="134node"} / count by(job, instance)(count by(job, instance, cpu)(node_cpu{instance="134node"}))

注释:

## node_load1 : 指1分钟内cpu平均负载,同样cpu_load5指5分钟内cpu平均负载,cpu_load15指15    

                           分钟内cpu平均负载

## count : 指聚合向量中的每个元素(即计数)

## 待添加后续注解

 

3.可用内存

node_memory_MemAvailable{instance="88node"}

注释:

## node_memory_MemAvailable :Memory information field MemAvailable, node-exporter已经抓取出来,只需查询展示即可;

    注意:该指标针对不同的系统是采集不同的,CentOS6.X 上就采集不到这个指标;CentOS7上可以;

 

4.空闲文件系统空间

sum(node_filesystem_free{fstype="xfs",instance="88node"})   

sum(node_filesystem_free{fstype="ext4",instance="134node"})

## node_filesystem_free: Filesystem free space in bytes

## fstype 有如下种类:

## aufs :  指联合文件系统,用来把原本分离的两个文件系统联合在一起

## cgroup : Cgroups(控制组)是Linux内核的一个功能,用来限制、统计和分离一个进程组的资源  

                   (CPU、内存、磁盘输入输出等)。

## tmpfs : tmpfs是一种虚拟内存文件系统,而不是块设备。

## overlay : 一个 overlay 文件系统包含两个文件系统,一个 upper 文件系统和一个 lower 文件系  

                      统,是一种新型的联合文件系统 

### proc、xfs、mqueue等等。

 

5.swap硬盘交换区:从硬盘到内存或从内存到硬盘,虚拟内存交换

 

Swap free :

node_memory_SwapFree{instance="134node"}

## node_memory_SwapTotal: Memory information field SwapTotal.

## swap :类似于可以把硬盘当内存用,那么这一部分内存一般就叫做swap

 

Swap Usage :

node_memory_SwapTotal{instance="134node"} - node_memory_SwapFree{instance="134node"}

## node_memory_SwapFree: Memory information field SwapFree

 

Swap I/O(in):

rate(node_vmstat_pswpin{instance="88node"}[1m]) * 4096 or irate(node_vmstat_pswpin{instance="88node"}[5m]) * 4096

 

Swap I/O(out):

rate(node_vmstat_pswpout{instance="88node"}[1m]) * 4096 or irate(node_vmstat_pswpout{instance="88node"}[5m]) * 4096

 

## vmstat :vmstat命令是最常见的Linux/Unix监控工具,可以展现给定时间间隔的服务器的状态值, 

                    包括服务器的CPU使用率,内存使用,虚拟内存交换情况,IO读写情况。

## pswpin/s:每秒从硬盘交换区传送进入内存的次数。

## pswpout/s:每秒从内存传送到硬盘交换区的次数。

## pswpin/s、 pswpout/s描述的是与硬盘交换区相关的交换活动。交换关系到系统的效率。交换区在

     硬盘上对硬盘的读,写操作比内存读,写慢得多,因此,为了提高系统效率就应该设法减少交换。  

     通常的作法就是加大内存,使交换区中进行的交换活动为零,或接近为零。如果swpot/s的值大

     于 1,预示可能需要增加内存或减少缓冲区(减少缓冲区能够释放一部分自由内存空间)。

 

Swap free 率(百分百)

(node_memory_SwapFree{instance=~"$server"}  /node_memory_SwapTotal{instance=~"$server"}) * 100

 

6.CPU使用率

avg without (cpu) (irate(node_cpu{instance="88node", mode!="idle"}[5m]))

## avg : 平均值

 

7.网路使用情况

上传速率:

     irate(node_network_transmit_bytes{device!="lo",instance="88node"}[1m])

下载速率:

     irate(node_network_receive_bytes{device!="lo",instance="88node"}[1m])

## eth0: ethernet的简写,一般用于以太网接口。

## wifi0:wifi是无线局域网,因此wifi0一般指无线网络接口。

## ath0: Atheros的简写,一般指Atheros芯片所包含的无线网络接口。

## tunl0:tunl0是隧道接口,封装数据的时候使用

## lo: local的简写,一般指本地环回接口。

 

8.内存使用率

已用内存:(总内存-空闲内存-缓存=已使用内存)

      node_memory_MemTotal{instance="88node"} -  

      node_memory_MemFree{instance="88node"} - 

      node_memory_Cached{instance="88node"} - 

      node_memory_Buffers{instance="88node"} - 

      node_memory_Slab{instance="88node"}

 

Buffer缓存:

     node_memory_Buffers{instance="88node"}

Cached缓存:

     node_memory_Cached{instance="88node"}  

     + node_memory_Slab{instance="88node"}

Free空闲内存:

     node_memory_MemFree{instance="88node"}

 

可用内存占比:

     (node_memory_MemAvailable{instance="88node"} / 

     node_memory_MemTotal{instance="88node"}) * 100

 

## total:总计物理内存的大小。

## Free:空闲内存有多少。

## Shared:多个进程共享的内存总额。

## Buffers:表示buffers cache的内存数量,一般对块设备的读写才需要缓冲

## Cached:表示page cached的内存数量,一般作文件系统的cached,频繁访问的文件都会被    

                  cached。如果cached值较大,就说明cached文件数较多。如果此时IO中的bi比较小,就                                                                                                                                                    

                  说明文件系统效率比较好

## Slab:slab分配器不仅可以提供动态内存的管理功能,而且可以作为经常分配并释放的内存的缓存

## MemAvailable: Free + Buffers + Cached - 不可回收的部分。不可回收部分包括:共享内存段,     

                             tmpfs,ramfs等

 

9.磁盘读写(IOPs)

磁盘每秒读取(5分钟内)

sum by (instance) (irate(node_disk_reads_completed{instance="88node"}[5m]))

##node_disk_reads_completed: The total number of reads completed successfully

磁盘每秒写入(5分钟内)

sum by (instance)(irate(node_disk_writes_completed{instance="88node"}[5m]))

##node_disk_writes_completed :The total number of writes completed successfully.

使用I/O的毫秒数(5分钟内)

sum by (instance) (irate(node_disk_io_time_ms{instance="88node"}[5m]))

##node_disk_io_time_ms: Total Milliseconds spent doing I/Os

磁盘每秒读写总数(5分钟内)

sum by (instance) (irate(node_disk_reads_completed{instance="88node"}[5m])) + sum by (instance) (irate(node_disk_writes_completed{instance="88node"}[5m]))

 

10.I/O Usage

磁盘读取总数(1分钟内)

sum(irate(node_disk_bytes_read{instance="88node"}[1m]))

##node_disk_bytes_read : The total number of bytes read successfully(成功读取的字节数)

磁盘写入总数(1分钟内)

sum(irate(node_disk_bytes_written{instance="88node"}[1m]))

##node_disk_bytes_written :The total number of bytes written successfully(成功写入的字节数)

使用I/O的毫秒数(1分钟内)

sum(irate(node_disk_io_time_ms{instance="88node"}[1m]))

##node_disk_io_time_ms :Total Milliseconds spent doing I/Os.(使用IO的总毫秒数)

 

11.文件系统空闲空间

最低值:

min(node_filesystem_free{fstype=~"xfs|ext4",instance="88node"} / node_filesystem_size{fstype=~"xfs|ext4",instance="88node"})

最高值:

max(node_filesystem_free{fstype=~"xfs|ext4",instance="88node"} / node_filesystem_size{fstype=~"xfs|ext4",instance="88node"})

## ext4是第四代扩展文件系统(英语:Fourth EXtended filesystem,缩写为ext4)是linlli

     linux下的日志文件系统,ext4的文件系统容量达到1EB,而文件容量则达到16TB

## XFS是一个64位文件系统,最大支持8EB减1字节的单个文件系统,实际部署时取决于宿主操作系  

     统的最大块限制。对于一个32位linux系统,文件和文件系统的大小会被限制在16TB。



推荐阅读
  • 篇首语:本文由编程笔记#小编为大家整理,主要介绍了软件测试知识点之数据库压力测试方法小结相关的知识,希望对你有一定的参考价值。 ... [详细]
  • 图解redis的持久化存储机制RDB和AOF的原理和优缺点
    本文通过图解的方式介绍了redis的持久化存储机制RDB和AOF的原理和优缺点。RDB是将redis内存中的数据保存为快照文件,恢复速度较快但不支持拉链式快照。AOF是将操作日志保存到磁盘,实时存储数据但恢复速度较慢。文章详细分析了两种机制的优缺点,帮助读者更好地理解redis的持久化存储策略。 ... [详细]
  • 在Docker中,将主机目录挂载到容器中作为volume使用时,常常会遇到文件权限问题。这是因为容器内外的UID不同所导致的。本文介绍了解决这个问题的方法,包括使用gosu和suexec工具以及在Dockerfile中配置volume的权限。通过这些方法,可以避免在使用Docker时出现无写权限的情况。 ... [详细]
  • 本文主要解析了Open judge C16H问题中涉及到的Magical Balls的快速幂和逆元算法,并给出了问题的解析和解决方法。详细介绍了问题的背景和规则,并给出了相应的算法解析和实现步骤。通过本文的解析,读者可以更好地理解和解决Open judge C16H问题中的Magical Balls部分。 ... [详细]
  • 本文介绍了P1651题目的描述和要求,以及计算能搭建的塔的最大高度的方法。通过动态规划和状压技术,将问题转化为求解差值的问题,并定义了相应的状态。最终得出了计算最大高度的解法。 ... [详细]
  • Webmin远程命令执行漏洞复现及防护方法
    本文介绍了Webmin远程命令执行漏洞CVE-2019-15107的漏洞详情和复现方法,同时提供了防护方法。漏洞存在于Webmin的找回密码页面中,攻击者无需权限即可注入命令并执行任意系统命令。文章还提供了相关参考链接和搭建靶场的步骤。此外,还指出了参考链接中的数据包不准确的问题,并解释了漏洞触发的条件。最后,给出了防护方法以避免受到该漏洞的攻击。 ... [详细]
  • 本文详细介绍了如何使用MySQL来显示SQL语句的执行时间,并通过MySQL Query Profiler获取CPU和内存使用量以及系统锁和表锁的时间。同时介绍了效能分析的三种方法:瓶颈分析、工作负载分析和基于比率的分析。 ... [详细]
  • 深度学习中的Vision Transformer (ViT)详解
    本文详细介绍了深度学习中的Vision Transformer (ViT)方法。首先介绍了相关工作和ViT的基本原理,包括图像块嵌入、可学习的嵌入、位置嵌入和Transformer编码器等。接着讨论了ViT的张量维度变化、归纳偏置与混合架构、微调及更高分辨率等方面。最后给出了实验结果和相关代码的链接。本文的研究表明,对于CV任务,直接应用纯Transformer架构于图像块序列是可行的,无需依赖于卷积网络。 ... [详细]
  • 统一知识图谱学习和建议:更好地理解用户偏好
    本文介绍了一种将知识图谱纳入推荐系统的方法,以提高推荐的准确性和可解释性。与现有方法不同的是,本方法考虑了知识图谱的不完整性,并在知识图谱中传输关系信息,以更好地理解用户的偏好。通过大量实验,验证了本方法在推荐任务和知识图谱完成任务上的优势。 ... [详细]
  • 上图是InnoDB存储引擎的结构。1、缓冲池InnoDB存储引擎是基于磁盘存储的,并将其中的记录按照页的方式进行管理。因此可以看作是基于磁盘的数据库系统。在数据库系统中,由于CPU速度 ... [详细]
  • Ihaveaworkfolderdirectory.我有一个工作文件夹目录。holderDir.glob(*)>holder[ProjectOne, ... [详细]
  • MySQL多表数据库操作方法及子查询详解
    本文详细介绍了MySQL数据库的多表操作方法,包括增删改和单表查询,同时还解释了子查询的概念和用法。文章通过示例和步骤说明了如何进行数据的插入、删除和更新操作,以及如何执行单表查询和使用聚合函数进行统计。对于需要对MySQL数据库进行操作的读者来说,本文是一个非常实用的参考资料。 ... [详细]
  • 本文探讨了容器技术在安全方面面临的挑战,并提出了相应的解决方案。多租户保护、用户访问控制、中毒的镜像、验证和加密、容器守护以及容器监控都是容器技术中需要关注的安全问题。通过在虚拟机中运行容器、限制特权升级、使用受信任的镜像库、进行验证和加密、限制容器守护进程的访问以及监控容器栈,可以提高容器技术的安全性。未来,随着容器技术的发展,还需解决诸如硬件支持、软件定义基础设施集成等挑战。 ... [详细]
  • 如何使用PLEX播放组播、抓取信号源以及设置路由器
    本文介绍了如何使用PLEX播放组播、抓取信号源以及设置路由器。通过使用xTeve软件和M3U源,用户可以在PLEX上实现直播功能,并且可以自动匹配EPG信息和定时录制节目。同时,本文还提供了从华为itv盒子提取组播地址的方法以及如何在ASUS固件路由器上设置IPTV。在使用PLEX之前,建议先使用VLC测试是否可以正常播放UDPXY转发的iptv流。最后,本文还介绍了docker版xTeve的设置方法。 ... [详细]
  • 负载均衡_Nginx反向代理动静分离负载均衡及rewrite隐藏路径详解(Nginx Apache MySQL Redis)–第二部分
    nginx反向代理、动静分离、负载均衡及rewrite隐藏路径详解 ... [详细]
author-avatar
荆州房产网
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有