热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

三种join方式:对驱动表和被驱动表的重新认识

http:www.cnblogs.comCareySonarchive201301092853094.html今天想到一些优化的问题,对驱动表重新认识了一下.浅谈SQLServ

http://www.cnblogs.com/CareySon/archive/2013/01/09/2853094.html 

今天想到一些优化的问题,对驱动表重新认识了一下.


浅谈SQL Server中的三种物理连接操作


简介

    在SQL Server中,我们所常见的表与表之间的Inner Join,Outer Join都会被执行引擎根据所选的列,数据上是否有索引,所选数据的选择性转化为Loop Join,Merge Join,Hash Join这三种物理连接中的一种。理解这三种物理连接是理解在表连接时解决性能问题的基础,下面我来对这三种连接的原理,适用场景进行描述。

 


嵌套循环连接(Nested Loop Join)

    循环嵌套连接是最基本的连接,正如其名所示那样,需要进行循环嵌套,这种连接方式的过程可以简单的用下图展示:

    1

     图1.循环嵌套连接的第一步

     2

     图2.循环嵌套连接的第二步

 

    由上面两个图不难看出,循环嵌套连接查找内部循环表的次数等于外部循环的行数,当外部循环没有更多的行时,循环嵌套结束。另外,还可以看出,这种连接方式需要内部循环的表有序(也就是有索引),并且外部循环表的行数要小于内部循环的行数,否则查询分析器就更倾向于Hash Join(会在本文后面讲到)。

    通过嵌套循环连接也可以看出,随着数据量的增长这种方式对性能的消耗将呈现出指数级别的增长,所以数据量到一定程度时,查询分析器往往就会采用这种方式。

    下面我们通过例子来看一下循环嵌套连接,利用微软的AdventureWorks数据库:

    3

    图3.一个简单的嵌套循环连接

   

    图3中ProductID是有索引的,并且在循环的外部表中(Product表)符合ProductID=870的行有4688条,因此,对应的SalesOrderDetail表需要查找4688次。让我们在上面的查询中再考虑另外一个例子,如图4所示。

    4

    图4.额外的列带来的额外的书签查找

  

    由图4中可以看出,由于多选择了一个UnitPrice列,导致了连接的索引无法覆盖所求查询,必须通过书签查找来进行,这也是为什么我们要养成只Select需要的列的好习惯,为了解决上面的问题,我们既可以用覆盖索引,也可以减少所需的列来避免书签查找。另外,上面符合ProductID的行仅仅只有5条,所以查询分析器会选择书签查找,假如我们将符合条件的行进行增大,查询分析器会倾向于表扫描(通常来说达到表中行数的1%以上往往就会进行table scan而不是书签查找,但这并不绝对),如图5所示。

    5

    图5.查询分析器选择了表扫描

 

    可以看出,查询分析器此时选择了表扫描来进行连接,这种方式效率要低下很多,因此好的覆盖索引和Select *都是需要注意的地方。另外,上面情况即使涉及到表扫描,依然是比较理想的情况,更糟糕的情况是使用多个不等式作为连接时,查询分析器即使知道每一个列的统计分布,但却不知道几个条件的联合分布,从而产生错误的执行计划,如图6所示。

    6

    图6.由于无法预估联合分布,导致的偏差

 

   由图6中,我们可以看出,估计的行数和实际的行数存在巨大的偏差,从而应该使用表扫描但查询分析器选择了书签查找,这种情况对性能的影响将会比表扫描更加巨大。具体大到什么程度呢?我们可以通过强制表扫描和查询分析器的默认计划进行比对,如图7所示。

    7

    图7.强制表扫描性能反而更好

 


合并连接(Merge Join)

    谈到合并连接,我突然想起在西雅图参加SQL Pass峰会晚上酒吧排队点酒,由于我和另外一哥们站错了位置,貌似我们两个在插队一样,我赶紧说:I’m sorry,i thought here is end of line。对方无不幽默的说:”It’s OK,In SQL Server,We called it merge join”。

    由上面的小故事不难看出,Merge Join其实上就是将两个有序队列进行连接,需要两端都已经有序,所以不必像Loop Join那样不断的查找循环内部的表。其次,Merge Join需要表连接条件中至少有一个等号查询分析器才会去选择Merge Join。

    Merge Join的过程我们可以简单用下面图进行描述:

    8

    图8.Merge Join第一步

 

    Merge Join首先从两个输入集合中各取第一行,如果匹配,则返回匹配行。假如两行不匹配,则有较小值的输入集合+1,如图9所示。

    9

    图9.更小值的输入集合向下进1

    用C#代码表示Merge Join的话如代码1所示。

public class MergeJoin
{// Assume that left and right are already sortedpublic static Relation Sort(Relation left, Relation right){Relation output = new Relation();while (!left.IsPastEnd() && !right.IsPastEnd()){if (left.Key == right.Key){output.Add(left.Key);left.Advance();right.Advance();}else if (left.Key right.Key)right.Advance();}return output;}
}

 

    代码1.Merge Join的C#代码表示

    因此,通常来说Merge Join如果输入两端有序,则Merge Join效率会非常高,但是如果需要使用显式Sort来保证有序实现Merge Join的话,那么Hash Join将会是效率更高的选择。但是也有一种例外,那就是查询中存在order by,group by,distinct等可能导致查询分析器不得不进行显式排序,那么对于查询分析器来说,反正都已经进行显式Sort了,何不一石二鸟的直接利用Sort后的结果进行成本更小的MERGE JOIN?在这种情况下,Merge Join将会是更好的选择。

    另外&#xff0c;我们可以由Merge Join的原理看出&#xff0c;当连接条件为不等式(但不包括!&#61;)&#xff0c;比如说> <>&#61;等方式时&#xff0c;Merge Join有着更好的效率。

    下面我们来看一个简单的Merge Join,这个Merge Join是由聚集索引和非聚集索引来保证Merge Join的两端有序&#xff0c;如图10所示。

    10

    图10.由聚集索引和非聚集索引保证输入两端有序

 

    当然&#xff0c;当Order By,Group By时查询分析器不得不用显式Sort,从而可以一箭双雕时&#xff0c;也会选择Merge Join而不是Hash Join,如图11所示。

    11

    图11.一箭双雕的Merge Join

 


哈希匹配(Hash Join)

    哈希匹配连接相对前面两种方式更加复杂一些&#xff0c;但是哈希匹配对于大量数据&#xff0c;并且无序的情况下性能均好于Merge Join和Loop Join。对于连接列没有排序的情况下(也就是没有索引)&#xff0c;查询分析器会倾向于使用Hash Join。

    哈希匹配分为两个阶段,分别为生成和探测阶段&#xff0c;首先是生成阶段&#xff0c;第一阶段生成阶段具体的过程可以如图12所示。

    12

    图12.哈希匹配的第一阶段

 

    图12中&#xff0c;将输入源中的每一个条目经过散列函数的计算都放到不同的Hash Bucket中&#xff0c;其中Hash Function的选择和Hash Bucket的数量都是黑盒&#xff0c;微软并没有公布具体的算法&#xff0c;但我相信已经是非常好的算法了。另外在Hash Bucket之内的条目是无序的。通常来讲&#xff0c;查询优化器都会使用连接两端中比较小的哪个输入集来作为第一阶段的输入源。

    接下来是探测阶段&#xff0c;对于另一个输入集合&#xff0c;同样针对每一行进行散列函数&#xff0c;确定其所应在的Hash Bucket,在针对这行和对应Hash Bucket中的每一行进行匹配&#xff0c;如果匹配则返回对应的行。

    通过了解哈希匹配的原理不难看出&#xff0c;哈希匹配涉及到散列函数&#xff0c;所以对CPU的消耗会非常高&#xff0c;此外&#xff0c;在Hash Bucket中的行是无序的&#xff0c;所以输出结果也是无序的。图13是一个典型的哈希匹配&#xff0c;其中查询分析器使用了表数据量比较小的Product表作为生成&#xff0c;而使用数据量大的SalesOrderDetail表作为探测。

    13

    图13.一个典型的哈希匹配连接

 

    上面的情况都是内存可以容纳下生成阶段所需的内存&#xff0c;如果内存吃紧&#xff0c;则还会涉及到Grace哈希匹配和递归哈希匹配&#xff0c;这就可能会用到TempDB从而吃掉大量的IO。这里就不细说了,有兴趣的同学可以移步:http://msdn.microsoft.com/zh-cn/library/aa178403(v&#61;SQL.80).aspx。

 


总结

    下面我们通过一个表格简单总结这几种连接方式的消耗和使用场景:


 嵌套循环连接合并连接哈希连接
适用场景外层循环小&#xff0c;内存循环条件列有序输入两端都有序数据量大&#xff0c;且没有索引
CPU低&#xff08;如果没有显式排序&#xff09;
内存低&#xff08;如果没有显式排序&#xff09;
IO可能高可能低可能高可能低

    理解SQL Server这几种物理连接方式对于性能调优来说必不可少&#xff0c;很多时候当筛选条件多表连接多时&#xff0c;查询分析器就可能不是那么智能了&#xff0c;因此理解这几种连接方式对于定位问题变得尤为重要。此外&#xff0c;我们也可以通过从业务角度减少查询范围来减少低下性能连接的可能性。

 

 

参考文献:

http://msdn.microsoft.com/zh-cn/library/aa178403(v&#61;SQL.80).aspx

http://www.dbsophic.com/SQL-Server-Articles/physical-join-operators-merge-operator.html

 


推荐阅读
  • 模板引擎StringTemplate的使用方法和特点
    本文介绍了模板引擎StringTemplate的使用方法和特点,包括强制Model和View的分离、Lazy-Evaluation、Recursive enable等。同时,还介绍了StringTemplate语法中的属性和普通字符的使用方法,并提供了向模板填充属性的示例代码。 ... [详细]
  • 图解redis的持久化存储机制RDB和AOF的原理和优缺点
    本文通过图解的方式介绍了redis的持久化存储机制RDB和AOF的原理和优缺点。RDB是将redis内存中的数据保存为快照文件,恢复速度较快但不支持拉链式快照。AOF是将操作日志保存到磁盘,实时存储数据但恢复速度较慢。文章详细分析了两种机制的优缺点,帮助读者更好地理解redis的持久化存储策略。 ... [详细]
  • 本文介绍了数据库的存储结构及其重要性,强调了关系数据库范例中将逻辑存储与物理存储分开的必要性。通过逻辑结构和物理结构的分离,可以实现对物理存储的重新组织和数据库的迁移,而应用程序不会察觉到任何更改。文章还展示了Oracle数据库的逻辑结构和物理结构,并介绍了表空间的概念和作用。 ... [详细]
  • 本文介绍了如何使用php限制数据库插入的条数并显示每次插入数据库之间的数据数目,以及避免重复提交的方法。同时还介绍了如何限制某一个数据库用户的并发连接数,以及设置数据库的连接数和连接超时时间的方法。最后提供了一些关于浏览器在线用户数和数据库连接数量比例的参考值。 ... [详细]
  • Spring特性实现接口多类的动态调用详解
    本文详细介绍了如何使用Spring特性实现接口多类的动态调用。通过对Spring IoC容器的基础类BeanFactory和ApplicationContext的介绍,以及getBeansOfType方法的应用,解决了在实际工作中遇到的接口及多个实现类的问题。同时,文章还提到了SPI使用的不便之处,并介绍了借助ApplicationContext实现需求的方法。阅读本文,你将了解到Spring特性的实现原理和实际应用方式。 ... [详细]
  • 基于事件驱动的并发编程及其消息通信机制的同步与异步、阻塞与非阻塞、IO模型的分类
    本文介绍了基于事件驱动的并发编程中的消息通信机制,包括同步和异步的概念及其区别,阻塞和非阻塞的状态,以及IO模型的分类。同步阻塞IO、同步非阻塞IO、异步阻塞IO和异步非阻塞IO等不同的IO模型被详细解释。这些概念和模型对于理解并发编程中的消息通信和IO操作具有重要意义。 ... [详细]
  • 高质量SQL书写的30条建议
    本文提供了30条关于优化SQL的建议,包括避免使用select *,使用具体字段,以及使用limit 1等。这些建议是基于实际开发经验总结出来的,旨在帮助读者优化SQL查询。 ... [详细]
  • 本文整理了Java面试中常见的问题及相关概念的解析,包括HashMap中为什么重写equals还要重写hashcode、map的分类和常见情况、final关键字的用法、Synchronized和lock的区别、volatile的介绍、Syncronized锁的作用、构造函数和构造函数重载的概念、方法覆盖和方法重载的区别、反射获取和设置对象私有字段的值的方法、通过反射创建对象的方式以及内部类的详解。 ... [详细]
  • HashMap的相关问题及其底层数据结构和操作流程
    本文介绍了关于HashMap的相关问题,包括其底层数据结构、JDK1.7和JDK1.8的差异、红黑树的使用、扩容和树化的条件、退化为链表的情况、索引的计算方法、hashcode和hash()方法的作用、数组容量的选择、Put方法的流程以及并发问题下的操作。文章还提到了扩容死链和数据错乱的问题,并探讨了key的设计要求。对于对Java面试中的HashMap问题感兴趣的读者,本文将为您提供一些有用的技术和经验。 ... [详细]
  • Hibernate延迟加载深入分析-集合属性的延迟加载策略
    本文深入分析了Hibernate延迟加载的机制,特别是集合属性的延迟加载策略。通过延迟加载,可以降低系统的内存开销,提高Hibernate的运行性能。对于集合属性,推荐使用延迟加载策略,即在系统需要使用集合属性时才从数据库装载关联的数据,避免一次加载所有集合属性导致性能下降。 ... [详细]
  • Oracle seg,V$TEMPSEG_USAGE与Oracle排序的关系及使用方法
    本文介绍了Oracle seg,V$TEMPSEG_USAGE与Oracle排序之间的关系,V$TEMPSEG_USAGE是V_$SORT_USAGE的同义词,通过查询dba_objects和dba_synonyms视图可以了解到它们的详细信息。同时,还探讨了V$TEMPSEG_USAGE的使用方法。 ... [详细]
  • JDK源码学习之HashTable(附带面试题)的学习笔记
    本文介绍了JDK源码学习之HashTable(附带面试题)的学习笔记,包括HashTable的定义、数据类型、与HashMap的关系和区别。文章提供了干货,并附带了其他相关主题的学习笔记。 ... [详细]
  • 本文介绍了一个适用于PHP应用快速接入TRX和TRC20数字资产的开发包,该开发包支持使用自有Tron区块链节点的应用场景,也支持基于Tron官方公共API服务的轻量级部署场景。提供的功能包括生成地址、验证地址、查询余额、交易转账、查询最新区块和查询交易信息等。详细信息可参考tron-php的Github地址:https://github.com/Fenguoz/tron-php。 ... [详细]
  • GreenDAO快速入门
    前言之前在自己做项目的时候,用到了GreenDAO数据库,其实对于数据库辅助工具库从OrmLite,到litePal再到GreenDAO,总是在不停的切换,但是没有真正去了解他们的 ... [详细]
  • Centos下安装memcached+memcached教程
    本文介绍了在Centos下安装memcached和使用memcached的教程,详细解释了memcached的工作原理,包括缓存数据和对象、减少数据库读取次数、提高网站速度等。同时,还对memcached的快速和高效率进行了解释,与传统的文件型数据库相比,memcached作为一个内存型数据库,具有更高的读取速度。 ... [详细]
author-avatar
紫百合1990_950
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有