热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

n*m*3输入图像到一个nxm标签在PyTorch。-n*m*3inputimagetoannxmlabelinPyTorch

TheinputtomynetworkisanRGBimagewithdimensionsnm,howcanIgettheoutputtohavedimensi

The input to my network is an RGB image with dimensions nm, how can I get the output to have dimensions of nm.

我的网络的输入是一个带有尺寸nm的RGB图像,我怎样才能使输出的尺寸为nm。

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 20, kernel_size = 5)
        self.conv2 = nn.Conv2d(20, 50, kernel_size = 3)
        self.conv3 = nn.ConvTranspose2d(50,20, kernel_size = 5)
        self.conv4 = nn.ConvTranspose2d(20,1, kernel_size = 3)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.relu(self.conv2(x))
        x = F.relu(self.conv3(x))
        x = F.relu(self.conv4(x))
    return x

I currently output a 1 * n * m. How can I output an n*m?

我现在输出的是1 * n*m,如何输出n*m?

1 个解决方案

#1


0  

If you want to reshape a Tensor into a different size but with the same number of elements, generally you can use torch.view.

如果你想要将一个张量变换成不同的大小,但有相同数量的元素,通常你可以使用torch.view。

For your case, there is an even simpler solution: torch.squeeze returns a Tensor with all dimensions of size 1 removed.

对于你的情况,有一个更简单的解决方案:火炬。压缩返回一个所有尺寸为1的张量。


推荐阅读
  • 本文介绍了利用ARMA模型对平稳非白噪声序列进行建模的步骤及代码实现。首先对观察值序列进行样本自相关系数和样本偏自相关系数的计算,然后根据这些系数的性质选择适当的ARMA模型进行拟合,并估计模型中的位置参数。接着进行模型的有效性检验,如果不通过则重新选择模型再拟合,如果通过则进行模型优化。最后利用拟合模型预测序列的未来走势。文章还介绍了绘制时序图、平稳性检验、白噪声检验、确定ARMA阶数和预测未来走势的代码实现。 ... [详细]
  • YOLOv7基于自己的数据集从零构建模型完整训练、推理计算超详细教程
    本文介绍了关于人工智能、神经网络和深度学习的知识点,并提供了YOLOv7基于自己的数据集从零构建模型完整训练、推理计算的详细教程。文章还提到了郑州最低生活保障的话题。对于从事目标检测任务的人来说,YOLO是一个熟悉的模型。文章还提到了yolov4和yolov6的相关内容,以及选择模型的优化思路。 ... [详细]
  • QuestionThereareatotalofncoursesyouhavetotake,labeledfrom0ton-1.Somecoursesmayhaveprerequi ... [详细]
  • 基于词向量计算文本相似度1.测试数据:链接:https:pan.baidu.coms1fXJjcujAmAwTfsuTg2CbWA提取码:f4vx2.实验代码:imp ... [详细]
  • 语义分割系列3SegNet(pytorch实现)
    SegNet手稿最早是在2015年12月投出,和FCN属于同时期作品。稍晚于FCN,既然属于后来者,又是与FCN同属于语义分割网络 ... [详细]
  • pytorch Dropout过拟合的操作
    这篇文章主要介绍了pytorchDropout过拟合的操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完 ... [详细]
  • 都会|可能会_###haohaohao###图神经网络之神器——PyTorch Geometric 上手 & 实战
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了###haohaohao###图神经网络之神器——PyTorchGeometric上手&实战相关的知识,希望对你有一定的参考价值。 ... [详细]
  • web.py开发web 第八章 Formalchemy 服务端验证方法
    本文介绍了在web.py开发中使用Formalchemy进行服务端表单数据验证的方法。以User表单为例,详细说明了对各字段的验证要求,包括必填、长度限制、唯一性等。同时介绍了如何自定义验证方法来实现验证唯一性和两个密码是否相等的功能。该文提供了相关代码示例。 ... [详细]
  • 本文介绍了Swing组件的用法,重点讲解了图标接口的定义和创建方法。图标接口用来将图标与各种组件相关联,可以是简单的绘画或使用磁盘上的GIF格式图像。文章详细介绍了图标接口的属性和绘制方法,并给出了一个菱形图标的实现示例。该示例可以配置图标的尺寸、颜色和填充状态。 ... [详细]
  • 本文介绍了H5游戏性能优化和调试技巧,包括从问题表象出发进行优化、排除外部问题导致的卡顿、帧率设定、减少drawcall的方法、UI优化和图集渲染等八个理念。对于游戏程序员来说,解决游戏性能问题是一个关键的任务,本文提供了一些有用的参考价值。摘要长度为183字。 ... [详细]
  • [echarts] 同指标对比柱状图相关的知识介绍及应用示例
    本文由编程笔记小编为大家整理,主要介绍了echarts同指标对比柱状图相关的知识,包括对比课程通过率最高的8个课程和最低的8个课程以及全校的平均通过率。文章提供了一个应用示例,展示了如何使用echarts制作同指标对比柱状图,并对代码进行了详细解释和说明。该示例可以帮助读者更好地理解和应用echarts。 ... [详细]
  • Vue基础一、什么是Vue1.1概念Vue(读音vjuː,类似于view)是一套用于构建用户界面的渐进式JavaScript框架,与其它大型框架不 ... [详细]
  • Thisworkcameoutofthediscussioninhttps://github.com/typesafehub/config/issues/272 ... [详细]
  • [转载]从零开始学习OpenGL ES之四 – 光效
    继续我们的iPhoneOpenGLES之旅,我们将讨论光效。目前,我们没有加入任何光效。幸运的是,OpenGL在没有设置光效的情况下仍然可 ... [详细]
  • 详解 Python 的二元算术运算,为什么说减法只是语法糖?[Python常见问题]
    原题|UnravellingbinaryarithmeticoperationsinPython作者|BrettCannon译者|豌豆花下猫(“Python猫 ... [详细]
author-avatar
mobiledu2502884677
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有