热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

pearson特征选择matlab,常用的特征选择方法之Pearson相关系数

众所周知,特征选择是机器学习活动至关重要的一步。最理想的情况下,我们把所有影响目标的独立因素给找出来,然后使用合适的量化手段,

众所周知,特征选择是机器学习活动至关重要的一步。最理想的情况下,我们把所有影响目标的独立因素给找出来,然后使用合适的量化手段,就能够得到完美描述目标问题的特征列表,用这些特征去建立合适容量的模型,这样的模型能够完美的匹配我们要解决的任务。

但是实际上这种想法太难实现了,我们往往只能从已有的数据出发,通过一些特征变换和组合得到一些原始特征,然后从这些原始特征中选出与目标相关的特征。

随着深度网络的崛起,越来越多的未经复杂变换的原始特征被加入到了深度网络中,大家期待有用的特征能够被自动的抽取和组合出来。但是这并不意味着特征工程就不需要了,推荐系统的大牛 Xavier 在技术博客《Rules of Machine Learning: Best Practices for ML Engineering》中提到很多关于特征工程的建议,非常值得一读,其中包含的思想就是特征是随着系统的优化进程而逐步添加的,并非一蹴而就,要始终保证特征的简单、直观、可复用、可监控和可靠性,这意味着我们需要时常对系统中存量特征做测试和筛选。

特征选择通常有过滤法(Filter)、打包法(Wrap)和嵌入法(Embed),其中,后两者都是与模型相关的,需要具体问题具体对待,而过滤法是指对特征进行预处理,提前过滤掉一些对目标无益(即对模型无益)的特征,它只考虑任务目标,而与模型无关。

我打算把常用的特征选择方法都再回顾一遍,力争把每种方法都讲得通俗易懂。这篇文章先介绍 Pearson 相关系数。

Pearson 相关系数的定义

Pearson 相关系数是用来检测两个连续型变量之间线性相关的程度,取值范围为 $[-1,1]$,正值表示正相关,负值表示负相关,绝对值越大表示线性相关程度越高。在实际做特征工程时候,如果两个变量的相关系数取值为负,可以将特征变量取负号,使之与目标变量正相关,这样来保证所有特征与目标之间都是正相关。

两个变量之间的 Pearson 相关系数定义为两个变量之间的协方差和标准差的商:

上式定义了总体相关系数,常用希腊小写字母 $\rho$ 作为代表符号。估算样本的协方差和标准差,可得到样本 Pearson 相关系数,用英文小写字母 $r$ 表示:

记 $\boldsymbol{x}’=\boldsymbol{x}-\overline{x}$ 和 $\boldsymbol{y}’=\boldsymbol{y}-\overline{y}$ 表示对变量 $\boldsymbol{x}$ 和 $\boldsymbol{y}$ 进行 $0$ 均值化,则实际上 $\boldsymbol{x}$ 和 $\boldsymbol{y}$ 的 Pearson 相关系数就是 $\boldsymbol{x}’$ 和 $\boldsymbol{y}’$ 的 cosine 相似度:$r_{\boldsymbol{x},\boldsymbol{y}}=\cos(\boldsymbol{x}’,\boldsymbol{y}’)=\frac{\boldsymbol{x}’\cdot\boldsymbol{y}’}{|\boldsymbol{x}’|\cdot|\boldsymbol{y}’|}$。

Pearson 相关系数的使用条件

使用 Pearson 相关系数之前需要检查数据是否满足前置条件:

两个变量间有线性关系;

变量是连续变量;

变量均符合正态分布,且二元分布也符合正态分布;

两变量独立;

两变量的方差不为 0;

这些条件在实际中很容易被忽略。

例如,在视频推荐中,我们可以将用户对视频的播放完成度作为目标变量,检测其他连续型特征与它的相关性,或者将这些连续型特征做特定的变换后,检测其与播放完成度的相关性。

但是播放完成度实际上不是正态分布的,如下图所示(实际上大多数日志统计特征,如用户播放视频数、视频播放完成度等,也都不服从正态分布),因此实际上是不能使用 Pearson 相关系数的,这时候可以用 Spearman 或者 Kendall 相关系数来代替。

1d7597eb82dce1443cbcafae5e3e8ec1.png

另外要注意的是,如果两个变量本身就是线性的关系,那么 Pearson 相关系数绝对值越大相关性越强,绝对值越小相关性越弱;但在当两个变量关系未知情况下,Pearson 相关系数的大小就没有什么指导意义了,它的绝对值大小并不能表征变量间的相关性强弱,这个时候最好能够画图出来看看作为辅助判断。我会在下面的例子里再详细的说明这一点。

举例说明

我们举个例子来看如何计算 Pearson 相关系数(这里仅仅演示计算过程,实际上数据的分布也不满足使用 Pearson 相关系数的条件)。

考虑视频推荐场景下,假设我们的目标 (之一) 是最大化视频的播放完成度 $y$,播放完成度的取值范围是 $[0,1]$,我们需要分析哪些因素跟 $y$ 相关,例如有一维特征是表示用户对视频的偏好度,记为 $x$,它的取值范围也是 $[0,1]$,我们把几条样本中 $x$ 和 $y$ 的取值计算出来,并画成散点图,如下所示:

ee5abae215d49cf3997c32b06d323d7d.png

我们可以按照公式 (2) 来计算 $x$ 与 $y$ 的 Pearson 相关系数:

计算变量平均值:$\overline{x} = 0.5,\ \overline{y}=0.55$;

计算平移后的变量:$\boldsymbol{x}=[-0.4,-0.3,-0.2,-0.1,0.1,0.2,0.3,0.4]$,$\boldsymbol{y}=[-0.45,-0.45,-0.35,0.05,0.15,0.25,0.35,0.45]$;

计算公式 (2) 的结果:$r=\frac{0.73}{\sqrt{0.6}\cdot\sqrt{ 0.94}}=0.972$;

通过计算,我们发现,这个特征与目标变量之间的线性相关性非常高,这与我们看图得到的认知是一致的。因此我们可以把这一维特征作为有效特征加入。

但是,如果我们对这个例子稍加修改,将最后一个数据点 $(0.9,1.0)$ 改为 $(0.9,-1.0)$,如图 3 所示:

6fd6c5921ad6bed8e14e7bd6d2401ed6.png

从我们的观察来看,最后一个数据点可能是噪声或者异常值,对我们判断两个变量的线性相关性应该不造成影响,但是实际上,我们再次计算一下这两个变量的 Pearson 相关系数,此时的值仅仅只有 $-0.0556$,可以说是几乎不线性相关了,这说明 Pearson 相关系数小并不代表线性相关性一定弱。在这种情况下,我们应该在数据清洗阶段把特征的异常值过滤或者平滑掉以后,再计算它与目标的相关系数。

反过来,Pearson 相关系数大也并不代表线性相关性一定强。图 4 列举了几个 Pearson 相关系数均为 $0.816$ 的变量数据,其中有些变量间并非明显的线性相关,或者是明显的二次相关,只是 Pearson 相关系数恰好较大而已。

9aa3bfe6a159613fbac56af062a10568.png

附示例的 python 代码:

1

2

3

4

5

6

7

8>>>from scipy.stats import pearsonr

>>>x = [0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9]

>>>y = [0.1, 0.1, 0.2, 0.6, 0.7, 0.8, 0.9, 1.0]

>>>pearsonr(x, y)

(0.97203814535663591, 5.3516208203873684e-05)

>>>z = [0.1, 0.1, 0.2, 0.6, 0.7, 0.8, 0.9, -1.0]

>>>pearsonr(x, z)

(-0.055618651039326214, 0.89592989552025337)

这里,pearsonr 返回的第二个结果是 p-value,其具体含义可参考官方文档。

Take-aways

本文简单的介绍了基于 Pearson 相关系数的特征选择方法,主要注意点总结如下:

Pearson 相关系数是用来检测两个连续型变量之间线性相关的程度,并且要求这两个变量分别分布服从正态分布;

Pearson 相关系数仅能度量变量间的线性相关性,如果变量间相关性未知,则 Pearson 相关系数的大小没有指导意义,此时需要借助可视化手段辅助判断;

两变量的 Pearson 相关系数实际上是这两个变量 $0$ 均值化后的 cosine 相似度;

如果两个变量是非线性相关,为了使用线性模型,可以先将特征变量进行非线性变换,使之与目标线性相关;

Pearson 相关系数对异常值比较敏感,在数据清洗阶段需要将异常值过滤或者平滑处理。



推荐阅读
  • 本文介绍了在Python张量流中使用make_merged_spec()方法合并设备规格对象的方法和语法,以及参数和返回值的说明,并提供了一个示例代码。 ... [详细]
  • 本文整理了315道Python基础题目及答案,帮助读者检验学习成果。文章介绍了学习Python的途径、Python与其他编程语言的对比、解释型和编译型编程语言的简述、Python解释器的种类和特点、位和字节的关系、以及至少5个PEP8规范。对于想要检验自己学习成果的读者,这些题目将是一个不错的选择。请注意,答案在视频中,本文不提供答案。 ... [详细]
  • 本文介绍了利用ARMA模型对平稳非白噪声序列进行建模的步骤及代码实现。首先对观察值序列进行样本自相关系数和样本偏自相关系数的计算,然后根据这些系数的性质选择适当的ARMA模型进行拟合,并估计模型中的位置参数。接着进行模型的有效性检验,如果不通过则重新选择模型再拟合,如果通过则进行模型优化。最后利用拟合模型预测序列的未来走势。文章还介绍了绘制时序图、平稳性检验、白噪声检验、确定ARMA阶数和预测未来走势的代码实现。 ... [详细]
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
  • 展开全部下面的代码是创建一个立方体Thisexamplescreatesanddisplaysasimplebox.#Thefirstlineloadstheinit_disp ... [详细]
  • web.py开发web 第八章 Formalchemy 服务端验证方法
    本文介绍了在web.py开发中使用Formalchemy进行服务端表单数据验证的方法。以User表单为例,详细说明了对各字段的验证要求,包括必填、长度限制、唯一性等。同时介绍了如何自定义验证方法来实现验证唯一性和两个密码是否相等的功能。该文提供了相关代码示例。 ... [详细]
  • 第四章高阶函数(参数传递、高阶函数、lambda表达式)(python进阶)的讲解和应用
    本文主要讲解了第四章高阶函数(参数传递、高阶函数、lambda表达式)的相关知识,包括函数参数传递机制和赋值机制、引用传递的概念和应用、默认参数的定义和使用等内容。同时介绍了高阶函数和lambda表达式的概念,并给出了一些实例代码进行演示。对于想要进一步提升python编程能力的读者来说,本文将是一个不错的学习资料。 ... [详细]
  • SpringBoot整合SpringSecurity+JWT实现单点登录
    SpringBoot整合SpringSecurity+JWT实现单点登录,Go语言社区,Golang程序员人脉社 ... [详细]
  • 背景应用安全领域,各类攻击长久以来都危害着互联网上的应用,在web应用安全风险中,各类注入、跨站等攻击仍然占据着较前的位置。WAF(Web应用防火墙)正是为防御和阻断这类攻击而存在 ... [详细]
  • Python使用Pillow包生成验证码图片的方法
    本文介绍了使用Python中的Pillow包生成验证码图片的方法。通过随机生成数字和符号,并添加干扰象素,生成一幅验证码图片。需要配置好Python环境,并安装Pillow库。代码实现包括导入Pillow包和随机模块,定义随机生成字母、数字和字体颜色的函数。 ... [详细]
  • 超级简单加解密工具的方案和功能
    本文介绍了一个超级简单的加解密工具的方案和功能。该工具可以读取文件头,并根据特定长度进行加密,加密后将加密部分写入源文件。同时,该工具也支持解密操作。加密和解密过程是可逆的。本文还提到了一些相关的功能和使用方法,并给出了Python代码示例。 ... [详细]
  • 本文介绍了贝叶斯垃圾邮件分类的机器学习代码,代码来源于https://www.cnblogs.com/huangyc/p/10327209.html,并对代码进行了简介。朴素贝叶斯分类器训练函数包括求p(Ci)和基于词汇表的p(w|Ci)。 ... [详细]
  • 如何使用Python从工程图图像中提取底部的方法?
    本文介绍了使用Python从工程图图像中提取底部的方法。首先将输入图片转换为灰度图像,并进行高斯模糊和阈值处理。然后通过填充潜在的轮廓以及使用轮廓逼近和矩形核进行过滤,去除非矩形轮廓。最后通过查找轮廓并使用轮廓近似、宽高比和轮廓区域进行过滤,隔离所需的底部轮廓,并使用Numpy切片提取底部模板部分。 ... [详细]
  • python中安装并使用redis相关的知识
    本文介绍了在python中安装并使用redis的相关知识,包括redis的数据缓存系统和支持的数据类型,以及在pycharm中安装redis模块和常用的字符串操作。 ... [详细]
  • 面试经验分享:华为面试四轮电话面试、一轮笔试、一轮主管视频面试、一轮hr视频面试
    最近有朋友去华为面试,面试经历包括四轮电话面试、一轮笔试、一轮主管视频面试、一轮hr视频面试。80%的人都在第一轮电话面试中失败,因为缺乏基础知识。面试问题涉及 ... [详细]
author-avatar
GloryWumie
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有