热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

散列表(HashTable)探秘--上

处理实际问题的一般数学方法是,首先提炼出问题的本质元素,然后把它看作一个比现实无限宽广的可能性系统,这个系统中的实质关系可以通过一般化的推理来论证理解,并可归纳成一般公式,而这个一般公式适用于任何特殊
处理实际问题的一般数学方法是,首先提炼出问题的本质元素,然后把它看作一个比现实无限宽广的可能性系统,这个系统中的实质关系可以通过一般化的推理来论证理解,并可归纳成一般公式,而这个一般公式适用于任何特殊情况。
                                        ——R.A. Fisher

  在一个解决方案的复杂性之中,理论或者概念的部分通常只占有限的一小部分。理论无法做实际的工作——否则它也不成其为理论了。从理论到实用,需要经过一系列的发明。从实用到更加实用、更加通用,往往需要增加更多的复杂性。有时,这一过程远远超越科学的范畴,成为艺术家的乐园。有时,这一过程引入了过多不必要的复杂性,只是因为人类的自私、愚蠢和目光短浅。
  科学不会也不能处理奇迹。科学只能处理重复的事件,艺术却不同。艺术是“就是如此”。在一个创作诞生以前,它是 Nothing——它没有来由、毫无征兆;诞生之后,它就是存在,是合理,是自然和美。我们所谈论的算法,作为一门实用的科学,既有科学的一面,也有艺术的一面。作为科学,它的结构可以分析,它的行为可以预测,它的属性可以量化,它的正确性可以证明。作为艺术,在一个算法诞生之后,有时我们只能说“它能工作”,仅此而已;对于它是如何来到这个世界上的,我们一无所知——这里没有“因为……所以……”,也不是简单的从一般到特殊。创造,似乎和生命一般神秘。我们可以给造物穿上漂亮的科学外衣,欣赏它内在的一致性,但是,最让人着迷的创造性的那一部分,却完全无法加以描述。
  所以,当我们进行散列表的从理论到实用之旅时,如果你察觉到一些没有解释的跨越,请不要见怪吧。如果没有这些跨越,我们就完全可以设计一个程序发明这些算法,我们所要学习的算法也就完全会是另外一个样子了。

O(n) 查找和 O(1) 查找,两个模型

  如果想知道在《伊利亚随笔选》这本书里是否有一个“囿”字,该怎么做呢?我们只有从第一页的第一行开始,一个字一个字地向后看去,直到找到这个字为止。如果直到最后一页的最后一个字都没有找到它,我们就知道这本书里根本没有这个字。所以,这项工作的复杂度是 O(n)。
  再假设有这样一本《会计专用字帖》,它只有9页,每一页上有一个大写的数字:

当会计想要练习“柒”字时,只要她事先知道页码和内容的对应关系,就可以直接翻到第7页,实现 O(1) 复杂度的查找。通过这个模型我们知道,要想达成 O(1) 复杂度的查找,必须满足3个条件:
  1. 存储单元(例如一页纸)中存储的内容(例如大写数字)与存储单元的地址(例如页码)必须是一一对应的。
  2. 这种一一对应的关系(例如大写数字“柒”在第7页)必须是可以预先知道的。
  3. 存储单元是可以随机读取的。这里“随机读取”的意思是可以以任意的顺序读取每个存储单元,并且每次读取所需时间都是相同的。与此相对的,读取磁带里的一首歌就不是随机的——想听第5首歌就不如听第一首歌来得那么方便。

在计算机上实现 O(1) 查找

  先来看计算机的硬件设备。计算机的内存支持随机存取,从它的名字 RAM(random-access memory) 可以看得出对于这一点它还真有一点引以为傲呢。
  既然硬件支持,我们就可以准备在计算机上模拟会计专业字帖了。第一项任务是向操作系统申请9个存储单元。这里有个小问题,我们得到的存储单元的地址很可能并不是从1到9,而是从134456开始的。好在我们并不需要直接跟操作系统打交道,高级语言会为我们搞定这些琐事。当我们使用高级语言创建一个数组时,相当于申请了一块连续的存储空间,数组的下标是每个存储单元(抽象)的地址。这样我们第一个 O(1) 复杂度的容器 SingleIntSet 很容易就可以完成了,它只能存储 0~9 这10个数字:
public class SingleIntSet
{
private object[] _values = new object[10];

public void Add(int item)
{
_values[item] = item;
}
public void Remove(int item)
{
_values[item] = null;
}
public bool Contains(int item)
{
if (_values[item] == null)
return false;
else
return (int)_values[item] == item;
}
}
测试一下:
static void Main(string[] args)
{
SingleIntSet set = new SingleIntSet();
set.Add(3);
set.Add(7);
Console.WriteLine(set.Contains(3)); // 输出 true
Console.WriteLine(set.Contains(5)); // 输出 false
}

新术语:使用高级语言创建了一个整型数组时(例如 int[] values = new int[10]),我们不再把 values[7] 称为“一个存储单元”,因为存储单元的大小是一个字节,在32位操作系统上,values[7] 的大小是4字节,所以我们要使用一个新术语,把 values[7] 称为 values 数组的一个槽(slot)

SingleIntSet2(说实话我真不喜欢这个名字,谁会喜欢?!)

  新需求!同样只需要保存10个数字,只不过这次不是保存0~9,而是需要保存10~19,怎么办?很简单,实现一个槽里的值与地址的映射函数 H() 即可:
public class SingleIntSet2
{
private object[] _values = new object[10];

private int H(int value)
{
return value - 10;
}

public void Add(int item)
{
_values[H(item)] = item;
}
public void Remove(int item)
{
_values[H(item)] = null;
}
public bool Contains(int item)
{
if (_values[H(item)] == null)
return false;
else
return (int)_values[H(item)] == item;
}
}

测试的时候,使用10~19范围内的数字:
static void Main(string[] args)
{
SingleIntSet2 set = new SingleIntSet2();
set.Add(13);
set.Add(17);
Console.WriteLine(set.Contains(13)); // 输出 true
Console.WriteLine(set.Contains(15)); // 输出 false
}

房子不够住,难道睡马路?

  这次,还是存储10个数字,只不过数字的范围是0~19。如何把20个数字存放到10个槽里?还能怎么办,2人住1间咯。略微修改一下 H() 函数,其它代码不变:
public class SingleIntSet3
{
private object[] _values = new object[10];

private int H(int value)
{
if (value >= 0 && value <= 9)
return value;
else
return value - 10;
}
// ...
}

测试一下:
static void Main(string[] args)
{
SingleIntSet3 set = new SingleIntSet3();
set.Add(3);
set.Add(17);
Console.WriteLine(set.Contains(3)); // 输出 true
Console.WriteLine(set.Contains(17)); // 输出 true
Console.WriteLine(set.Contains(13)); // 输出 false
set.Add(13);
Console.WriteLine(set.Contains(13)); // 输出 true
Console.WriteLine(set.Contains(3)); // 输出 false. 但是应该输出 true 才对!
}

最后一行的结果不对!2人住1间是行不通的,数据受不了这委屈。但是米有办法,除非 1) 我们预先知道所有的10个输入;2) 这10个输入一旦决定就不再更改,否则无论怎么设计 H() 函数都无法避免2人住一间的情况,这时我们就说发生了碰撞(collision)

用链接法处理碰撞

  处理碰撞最简单的一个办法是链接法(chaining)。链接法就是让发生碰撞的2人住2间,但是共用1个公共地址。为了简单起见,可以让数组的每个槽都指向一个链表:
public class SingleIntSet4
{
private object[] _values = new object[10];

private int H(int value)
{
if (value >= 0 && value <= 9)
return value;
else
return value - 10;
}

public void Add(int item)
{
if (_values[H(item)] == null)
{
LinkedList ls = new LinkedList();
ls.AddFirst(item);
_values[H(item)] = ls;
}
else
{
LinkedList ls = _values[H(item)] as LinkedList;
ls.AddLast(item);
}
}
public void Remove(int item)
{
LinkedList ls = _values[H(item)] as LinkedList;
ls.Remove(item);
}
public bool Contains(int item)
{
if (_values[H(item)] == null)
{
return false;
}
else
{
LinkedList ls = _values[H(item)] as LinkedList;
return ls.Contains(item);
}
}
}

测试一下,这次得到了正确的结果:
static void Main(string[] args)
{
SingleIntSet4 set = new SingleIntSet4();
set.Add(3);
set.Add(17);
Console.WriteLine(set.Contains(3)); // 输出 true
Console.WriteLine(set.Contains(17)); // 输出 true
Console.WriteLine(set.Contains(13)); // 输出 false
set.Add(13);
Console.WriteLine(set.Contains(13)); // 输出 true
Console.WriteLine(set.Contains(3)); // 输出 true
}

如何让21亿人使用10个地址?

  好吧,有了链接法,我们有了足够的房子以应对可能发生的碰撞。但是我们仍然希望碰撞发生的几率越小越好,特别是当我们把数值范围由 0~19 扩大到 0~int.MaxValue 时候。有什么办法能把21亿个数值映射成10个数值,并且尽量减少碰撞?

除法散列法

  h(k) = k mod m
其中,k为槽中的数值,m是数组的大小(为了简单起见本例中固定为10)。这样我们得到第一个正整数范围内通用的 IntSet:
public class IntSet
{
private object[] _values = new object[10];

private int H(int value)
{
return value % 10;
}
// 其它部分与 SingleIntSet4 相同
}

测试一下 IntSet.H() 工作得怎么样:
Console.WriteLine(H(3));  // 输出 3
Console.WriteLine(H(13)); // 输出 3
Console.WriteLine(H(17)); // 输出 7

挖藕,只发生了一次碰撞!它竟然与手写版的 SingleIntSet4.H() 工作得一样好。除法散列法为什么有效呢?魔术一旦揭开谜底总是显得平平无奇:
  其一,如果小学课程还想得起来的话,应该还记得再大的数除以10的余数都一定介于0~9之间,以此作为下标访问数组自然不用担心越界啦。
  其二,让 h() 得出 1 的 k 的数量与让 h() 得出 2 的 k 的数量相同,这样才不容易产生碰撞。
  其三,让 h() 得出 1 的 k 是 1、11、21、31……101、111、121……也就是说导致碰撞的 k 值比较分散。这是很重要的,因为在实际使用 IntSet 的时候,存储的值经常是紧挨着的,譬如年龄、序号、身份证号码等等。
  需要注意的是 m 不应是 2 的幂即 2p 的形式,此时 h(k) 将等于 k 的二进制的最低 p 位。以 m = 23 = 8 为例,如下图所示:

以 k = 170 为例,h(k) = 170 mod 8 = (27 + 25 + 23 + 0*22 + 21 + 0*20) mod 23 =  (24*23 + 22*23 + 23 + 0*22 + 21 + 0*20) mod 23 = 0*22 + 21 + 0*20
也就是说只有最低的 p 位不能被 2p 整除。这有什么问题呢?问题是我们不想假设 k 的分布,所以通常希望 h(k) 的值依赖于 k 的所有位而不是最低 p 位。天知道 k 不会是“11010000、00110000、10010000……” 这种样子(假设有个白痴操作系统喜欢先在高位分配一个对象的 Id,而我们又希望把这个 Id 作为 k 的时候,杯具就发生了)。
  当用户指定数组的大小之后,我们要找到一个与之最接近的质数作为实际的 m 值,为了速度,我们把常用的质数预存在一张质数表中,新的 IntSet2 允许用户指定它的容量:
public class IntSet2
{
private object[] _values;

public IntSet2(int capacity)
{
int size = GetPrime(capacity);
_values = new object[size];
}

private int H(int value)
{
return value % _values.Length;
}

// 质数表
private readonly int[] primes = {
3, 7, 11, 17, 23, 29, 37, 47, 59, 71, 89, 107, 131, 163, 197, 239, 293, 353, 431, 521, 631, 761, 919,
1103, 1327, 1597, 1931, 2333, 2801, 3371, 4049, 4861, 5839, 7013, 8419, 10103, 12143, 14591,
17519, 21023, 25229, 30293, 36353, 43627, 52361, 62851, 75431, 90523, 108631, 130363, 156437,
187751, 225307, 270371, 324449, 389357, 467237, 560689, 672827, 807403, 968897, 1162687, 1395263,
1674319, 2009191, 2411033, 2893249, 3471899, 4166287, 4999559, 5999471, 7199369};

// 判断 candidate 是否是质数
private bool IsPrime(int candidate)
{
if ((candidate & 1) != 0) // 是奇数
{
int limit = (int)Math.Sqrt(candidate);
for (int divisor = 3; divisor <= limit; divisor += 2) // divisor = 3、5、7...candidate的平方根
{
if ((candidate % divisor) == 0)
return false;
}
return true;
}
return (candidate == 2); // 除了2,其它偶数全都不是质数
}
// 如果 min 是质数,返回 min;否则返回比 min 稍大的那个质数
private int GetPrime(int min)
{
// 从质数表中查找比 min 稍大的质数
for (int i = 0; i {
int prime = primes[i];
if (prime >= min) return prime;
}

// min 超过了质数表的范围时,探查 min 之后的每一个奇数,直到发现下一个质数
for (int i = (min | 1); i {
if (IsPrime(i))
return i;
}
return min;
}
// 其它部分与 IntSet 相同
}

注:质数表 primes 和 IsPrime()、GetPrime() 函数都是 Copy 自 .net framwork2.0 源代码的 Hashtable.cs

乘法散列法

  h(k) = ⌊m(kA mod 1)⌋
其中,A 是一个大于0小于1的常数,例如可以取 A = 2654435769 / 232。kA mod 1 的意思是取 kA 的小数部分。C# 代码可以像这样:
private readonly double A = 2654435769 / Math.Pow(2, 32);
int H(int value)
{
return (int)(_values.Length * (value * A % 1));
}

关于那个神奇数字的来历以及如何利用计算机的位操作更快地实现 H(),可参见《算法导论》 P138。
乘法散列法的缺点是不如除法散列法那么均匀,可以比较一下 k 取 0~1000 满足 m = 100,h(k)=1 的 k 的分布: 

除法散列法,h(k) = k mod 100
k    h(k)       跨度
1       1       -
101     1       100
201     1       100
301     1       100
401     1       100
501     1       100
601     1       100
701     1       100
801     1       100
901     1       100

乘法散列法,h(k) = 100*(kA mod 1)
k    h(k)       跨度
34      1       -
123     1       89
178     1       55
267     1       89
411     1       144
500     1       89
644     1       144
733     1       89
788     1       55
877     1       89


?

到目前为止,还有3个遗憾:
1. 只支持正整数。
2. 链接法虽然简单、直接,却不是处理碰撞的唯一的方法。人家 .net framework 的 Hashtable 可是用的更好的开放寻址法。
3. 只能在创建时指定容器的大小,不能自动扩张。

让我们喘口气先,这些留在下一篇继续战斗。 



推荐阅读
  • Java容器中的compareto方法排序原理解析
    本文从源码解析Java容器中的compareto方法的排序原理,讲解了在使用数组存储数据时的限制以及存储效率的问题。同时提到了Redis的五大数据结构和list、set等知识点,回忆了作者大学时代的Java学习经历。文章以作者做的思维导图作为目录,展示了整个讲解过程。 ... [详细]
  • 集合的遍历方式及其局限性
    本文介绍了Java中集合的遍历方式,重点介绍了for-each语句的用法和优势。同时指出了for-each语句无法引用数组或集合的索引的局限性。通过示例代码展示了for-each语句的使用方法,并提供了改写为for语句版本的方法。 ... [详细]
  • Iamtryingtomakeaclassthatwillreadatextfileofnamesintoanarray,thenreturnthatarra ... [详细]
  • 阿,里,云,物,联网,net,core,客户端,czgl,aliiotclient, ... [详细]
  • JavaSE笔试题-接口、抽象类、多态等问题解答
    本文解答了JavaSE笔试题中关于接口、抽象类、多态等问题。包括Math类的取整数方法、接口是否可继承、抽象类是否可实现接口、抽象类是否可继承具体类、抽象类中是否可以有静态main方法等问题。同时介绍了面向对象的特征,以及Java中实现多态的机制。 ... [详细]
  • 本文讨论了一个关于cuowu类的问题,作者在使用cuowu类时遇到了错误提示和使用AdjustmentListener的问题。文章提供了16个解决方案,并给出了两个可能导致错误的原因。 ... [详细]
  • Android JSON基础,音视频开发进阶指南目录
    Array里面的对象数据是有序的,json字符串最外层是方括号的,方括号:[]解析jsonArray代码try{json字符串最外层是 ... [详细]
  • 本文探讨了C语言中指针的应用与价值,指针在C语言中具有灵活性和可变性,通过指针可以操作系统内存和控制外部I/O端口。文章介绍了指针变量和指针的指向变量的含义和用法,以及判断变量数据类型和指向变量或成员变量的类型的方法。还讨论了指针访问数组元素和下标法数组元素的等价关系,以及指针作为函数参数可以改变主调函数变量的值的特点。此外,文章还提到了指针在动态存储分配、链表创建和相关操作中的应用,以及类成员指针与外部变量的区分方法。通过本文的阐述,读者可以更好地理解和应用C语言中的指针。 ... [详细]
  • 标题: ... [详细]
  • 如何自行分析定位SAP BSP错误
    The“BSPtag”Imentionedintheblogtitlemeansforexamplethetagchtmlb:configCelleratorbelowwhichi ... [详细]
  • Java太阳系小游戏分析和源码详解
    本文介绍了一个基于Java的太阳系小游戏的分析和源码详解。通过对面向对象的知识的学习和实践,作者实现了太阳系各行星绕太阳转的效果。文章详细介绍了游戏的设计思路和源码结构,包括工具类、常量、图片加载、面板等。通过这个小游戏的制作,读者可以巩固和应用所学的知识,如类的继承、方法的重载与重写、多态和封装等。 ... [详细]
  • 目录实现效果:实现环境实现方法一:基本思路主要代码JavaScript代码总结方法二主要代码总结方法三基本思路主要代码JavaScriptHTML总结实 ... [详细]
  • Spring特性实现接口多类的动态调用详解
    本文详细介绍了如何使用Spring特性实现接口多类的动态调用。通过对Spring IoC容器的基础类BeanFactory和ApplicationContext的介绍,以及getBeansOfType方法的应用,解决了在实际工作中遇到的接口及多个实现类的问题。同时,文章还提到了SPI使用的不便之处,并介绍了借助ApplicationContext实现需求的方法。阅读本文,你将了解到Spring特性的实现原理和实际应用方式。 ... [详细]
  • 本文介绍了Java的集合及其实现类,包括数据结构、抽象类和具体实现类的关系,详细介绍了List接口及其实现类ArrayList的基本操作和特点。文章通过提供相关参考文档和链接,帮助读者更好地理解和使用Java的集合类。 ... [详细]
  • 摘要: 在测试数据中,生成中文姓名是一个常见的需求。本文介绍了使用C#编写的随机生成中文姓名的方法,并分享了相关代码。作者欢迎读者提出意见和建议。 ... [详细]
author-avatar
书友36296361
这个家伙很懒,什么也没留下!
Tags | 热门标签
RankList | 热门文章
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有