热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

java排序算法之快速排序_java

这篇文章主要介绍了java排序算法之快速排序,文中通过图片和代码讲解相关知识非常详细,大家如果有需要的话

简单介绍

快速排序(Quicksort) 是对 冒泡排序的一种改进。

基本思想

快速排序算法通过多次比较和交换来实现排序,其排序流程如下:

  • (1)首先设定一个分界值(基准值),通过该分界值将数组分成左右两部分。
  • (2)将大于或等于分界值的数据集中到数组右边,小于分界值的数据集中到数组的左边。此时,左边部分中各元素都小于或等于分界值,而右边部分中各元素都大于或等于分界值。
  • (3)然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。
  • (4)重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左、右两个部分各数据排序完成后,整个数组的排序也就完成了。

该思想可以概括为:挖坑填数 + 分治法。

比如如下的示意图:

  • 上图以 最后一个元素的值 作为基准
  • 比基准值小的,排在左侧,比基准值大的排在右侧
  • 然后再以分好的部分重复以上操作,直到每个部分中只有一个数据时,就排好序了

思路分析

基本思想如上,但是实现思路有多种,一般取基准值都是以首尾或者中间,这里使用 数组中间 的作为基准值,进行讲解。

  • 原始数组:arr = [-9,78,0,23,-567-70]

  • 设置两个变量,左下标L = 0,右下标R = 数组大小 - 1,选数组中间的值为基准值,pivot = arr[(L + R )/ 2] ,基准值为 0。再用两个变量保存 左下标 和 右下标,left = Lright = R,用于后面的排序做准备。

可以看到,pivot把数组分成了两组

  • 左边一组,从左到右,挨个与 基准值 比较,找出比基准值大的值,跳出查找循环

  • 右边一组,从右到左,挨个与 基准值 比较,找出比基准值小的值,跳出查找循环

  • 可以看到左右两组各找到一个对应的值,那么就让他们进行交换

  • 然后继续找,直到左右两边碰到,

可以看到左边的组已经找完了,L指向了基准值,那就跳出查找循环,右边组开始查找,

但是我们可以看到右边的数也都符合规则,所以R也循环遍历到了基准值的位置,此时LR 已经碰到一起了,这一轮就结束。这一轮就称为快速排序。

继续对分出来的小组,进行上述的快速排序操作,直到组内只剩下一个数时,则排序完成。

  • LR 分别前进一步和后退一步,

如图,就可以再次利用这两个变量,对两组进行快速排序了。

  • 先对左边的组进行快速排序,同样进行上面的操作,

这里就用到了上一次快速循环所保存的leftright(上图没有画出来)了。

  • 因为这里 left 直接就指向了 pivot ,所以不用进行移动查找了。Rpivot进行比较 ,-567 <-9 ,Rleft进行交换,得到如下图,注:pivot 是一个值,不是引用类型

因为 Rleft 没有碰头,所以还得进行一次循环比较。因为 R 就在基准点这,所以不移动,Rpivot 比较,-9 > -567 , 所以left 前进一步,

此时Rleft 已经碰到一起了,这一轮就结束了。

  • 右边的组也是同样的道理,这里就不作过多的解析了

l ------------ pivot --------------- r
一组从左往右找               一组从右往左找

可以看到,分组后,可以使用递归,对这一组继续分组,然后对他们进行快速排序。

代码实现

推导实现

推导法先实现第一轮

    @Test
    public void processDemo() {
        int arr[] = {-9, 78, 0, 23, -567, 70};
        System.out.println("原始数组:" + Arrays.toString(arr));
        processQuickSort(arr, 0, arr.length - 1);
    }

    /**
     * @param arr
     * @param left  左边这一组的下标起始点,到中间值,则为一组
     * @param right 右边这一组的下标结束点,到中间值,则为一组
     */
    public void processQuickSort(int[] arr, int left, int right) {
        /*
         基本思想:选择一个基准值,将基准值小分成一组,比基准值大的分成一组。
         这里的实现思路:
            1. 挑选的基准值为数组中间的值
            2. 中间值就把数组分成了两组
            3. 左边一组,从左到右,挨个与 基准值 比较,找出比基准值大的值
            4. 右边一组,从右到左,挨个与 基准值 比较,找出比基准值小的值
            5. 左右两边各找到一个值,那么就让这两个值进行交换
            6. 然后继续找,直到左右两边碰到,这一轮就结束。这一轮就称为快速排序
            7. 继续对分出来的小组,进行上述的快速排序操作,直到组内只剩下一个数时,则排序完成

            l ------------ pivot --------------- r
            一组从左往右找               一组从右往左找
         */
        int l = left;
        int r = right;
        // 中心点,让这个点作为基准值
        int pivot = arr[(left + right) / 2];
        // 当他们没有碰到的时候,说明还这一轮还可以继续找
        while (l  pivot
            //      也就是说,如果 arr[l]  pivot,则表示还没有找到比基准值小的数
            //注意:这里也同样跟上面一样,不能等于 pivort
            while (arr[r] > pivot) {
                r--;//让右边组继续找
            }

            // 当左侧与右侧相碰时,说明两边都没有找到,这一轮不用进行交换
            // 等于表示,找到了中间的下标
            if (l >= r) {
                break;
            }

            // 当找到时,则两数进行交换。
            //注意:这里可能会出现有一组已经找完了,或者没有找到,但是另一组找到了,所以一个是指向 pivot 的,
            //另一个则是指向要交换的数,交换后 pivot的值在数组中的位置会发生改变,下次的交换方式就会发生变化。这个地方要动脑筋想想。
            int temp = arr[l];
            arr[l] = arr[r];
            arr[r] = temp;

            // 当交换后,
            // 当数组是: {-9, 78, 0, -23, 0, 70}  时(pivot的值在数组中有多个),就可以验证这里的逻辑
            // 如果没有这个判定,将会导致,l 永远 小于 r。循环不能退出来的情况,就出现死循环了
            if (arr[l] == pivot) {
                /*
                  l 自己不能往前移动 一步,因为当交换完成后为:{-9, 0, 0, -23, 78, 70}
                  l = 1,arr[l] = 0
                  r = 4,arr[r] = 78
                  再经过一次循环后
                  l = 1,arr[l] = 0
                  r = 3,arr[r] = -23
                  交换后数组为:{-9,-23,0,0,78,70}
                  此时 l = 1,arr[l] = -23;r = 3,arr[r] = 0
                  又经过一次循环后
                  l = 2,arr[l] = 0
                  r = 3,arr[r] = 0
                  数组为:{-9,-23,0,0,78,70}
                  进入了死循环
                  这里好好动脑子想想
                  
                  这里为什么是用r-=1呢?是因为if里面的条件是arr[l] == pivot,如果要排序的数组中不存在多个和基准值相等的值,
                  那么用l+=1的话,l就会跑过分界线(基准值),跑到另一组去,这个算法也就失败了,
                  还有一个原因是,r 是刚刚交换过的,一定比 基准值大,所以没有必要再和基准值比较了
                 */
                r -= 1;
            }
            // 这里和上面一致,如果说,先走了上面的 r-=1
            // 这里也满足(也就是说有多个值和基准值相等),那么说明,下一次是相同的两个值,一个是 r == 一个是基准值
            // 但是他们是相同的值,r后退一步 l前进一步,不影响。但是再走这完这里逻辑时,就会导致  l > r,退出整个循环
            if (arr[r] == pivot) {
                l += 1;
            }
        }
        System.out.println("第 1 轮排序后:" + Arrays.toString(arr));
    }

注意:上述的算法特别是边界判定,就是上面「当交换后」对 r-=1 的这个边界判定时,有点难以理解,但是一定要理解为什么要这样写。

测试信息输出

原始数组:[-9, 78, 0, 23, -567, 70]
第 1 轮排序后:[-9, -567, 0, 23, 78, 70]

那么如何向左递归和右递归呢?在上面的代码后面接着实现如下

        System.out.println("第 1 轮排序后:" + Arrays.toString(arr));

		/*
		if (l >= r) {
                break;
            }
            循环从这条代码中跳出就会l = r
		*/
        // 如果 l = r,会出现死循环,出现栈溢出
		//这里也要动脑子想想
        if (l == r) {
            l++;
            r--;
        }

        // 开始左递归
        // 上面算法是 r--,l++ ,往两组的中间走,当 left  l) {
            processQuickSort(arr, l, right);
        }

完整实现

完整实现和推导实现其实差不多了,为了加深记忆,自己按照基本思想和思路分析,默写。

  /**
     * 快速排序默写实现
     * 
     *     基本思想:通过一趟将要排序的数据,分隔成独立的两个部分,一部分的所有数据都比另一部分的所有数据要小。
     *     思路分析:
     *      {-9, 78, 0, 23, -567, 70};  length=6
     *      1. 挑选中间的值作为 基准值:(0 + (6 -1))/2= [2] = 0
     *      2. 左侧 left 部分,从 0 开始到中间值 -1: 0,1: -9, 78,找出一个比基准值大的数
     *      3. 右侧 right 部分,从中间值 + 1 到数组大小-1:3,5:23,-567, 70,找出一个比基准值小的数
     *      4. 如果找到,则将他们进行交换,这样一轮下来,就完成了一次快速排序:一部分的所有数据都比另一部分的所有数据要小。
     *      4. 如果左侧部分还可以分组,则进行左侧递归调用
     *      5. 如果右侧部分还可以分组,则进行右侧递归调用
     *
     *    简单说:一轮快速排序示意图如下:
     *                   中间的基准值
     *      l ------------ pivot --------------- r
     *      一组从左往右找               一组从右往左找
     *      找到比基准值大的数          找出一个比基准值小的数
     *                    然后进行交换
     * 
     */
    @Test
    public void quickSortTest() {
        int arr[] = {-9, 78, 0, 23, -567, 70};
//        int arr[] = {-9, 78, 0, -23, 0, 70}; // 在推导过程中,将会导致交换异常的数组,在这里不会出现那种情况
        int left = 0;
        int right = arr.length - 1;
        System.out.println("原始数组:" + Arrays.toString(arr));
        quickSort(arr, left, right);
        System.out.println("排序后:" + Arrays.toString(arr));
    }

    public void quickSort(int[] arr, int left, int right) {
        // 找到中间值
        int pivotIndex = (left + right) / 2;
        int pivot = arr[pivotIndex];
        int l = left;
        int r = right;
        while (l  pivot) {
                r--;
            }
            // 表示未找到
            if (l >= r) {
                break;
            }
            // 进行交换
            int temp = arr[l];
            arr[l] = arr[r];
            arr[r] = temp;

            // 那么下一轮,左侧的这个值将不再参与排序,因为刚交换过,一定比基准值小
            // 那么下一轮,右侧的这个值将不再参与排序,因为刚交换过,一定比基准值大
            r--;
            l++;
        }

        // 当一轮找完后,没有找到,则是中间值时,
        // 需要让他们擦肩而过,也就是重新分组,中间值不再参与分组
        // 否则,在某些情况下,会进入死循环
        if (l == r) {
            l++;
            r--;
        }
        // 如果左侧还可以继续分组,则继续快排
        // 由于擦肩而过了,那么左侧的组值,则是最初的开始与中间值的前一个,也就是这里得到的 r
        if (left  l) {
            quickSort(arr, l, right);
        }
    }

另外,在实现的过程中,将某些代码为什么要那样判断边界,进行了梳理。你会发现上述代码和推导的代码有一个地方不一样。这个是我自己按逻辑进行的改进,更容易看明白一些。目前未发现 bug,如果有错请评论指出,毕竟这个算法还是有点难的。

大数据量耗时测试

    /**
     * 大量数据排序时间测试
     */
    @Test
    public void bulkDataSort() {
        int max = 80000;
//        int max = 8;
        int[] arr = new int[max];
        for (int i = 0; i 

多次运行输出

共耗时:40 毫秒
共耗时:52 毫秒
共耗时:36 毫秒
共耗时:31 毫秒

性能分析

快速排序的一次划分算法从两头交替搜索,直到low和hight重合,因此其时间复杂度是O(n);而整个快速排序算法的时间复杂度与划分的趟数有关。

理想的情况是,每次划分所选择的中间数恰好将当前序列几乎等分,经过log2n趟划分,便可得到长度为1的子表。这样,整个算法的时间复杂度为O(nlog2n)。

最坏的情况是,每次所选的中间数是当前序列中的最大或最小元素,这使得每次划分所得的子表中一个为空表,另一子表的长度为原表的长度-1。这样,长度为n的数据表的快速排序需要经过n趟划分,使得整个排序算法的时间复杂度为O(n2)。

为改善最坏情况下的时间性能,可采用其他方法选取中间数。通常采用“三者值取中”方法,即比较H->r[low].key、H->r[high].key与H->r[(low+high)/2].key,取三者中关键字为中值的元素为中间数。

可以证明,快速排序的平均时间复杂度也是O(nlog2n)。因此,该排序方法被认为是目前最好的一种内部排序方法。

从空间性能上看,尽管快速排序只需要一个元素的辅助空间,但快速排序需要一个栈空间来实现递归。最好的情况下,即快速排序的每一趟排序都将元素序列均匀地分割成长度相近的两个子表,所需栈的最大深度为log2(n+1);但最坏的情况下,栈的最大深度为n。这样,快速排序的空间复杂度为O(log2n)。


推荐阅读
  • 本文介绍了一种轻巧方便的工具——集算器,通过使用集算器可以将文本日志变成结构化数据,然后可以使用SQL式查询。集算器利用集算语言的优点,将日志内容结构化为数据表结构,SPL支持直接对结构化的文件进行SQL查询,不再需要安装配置第三方数据库软件。本文还详细介绍了具体的实施过程。 ... [详细]
  • 如何自行分析定位SAP BSP错误
    The“BSPtag”Imentionedintheblogtitlemeansforexamplethetagchtmlb:configCelleratorbelowwhichi ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • 在Android开发中,使用Picasso库可以实现对网络图片的等比例缩放。本文介绍了使用Picasso库进行图片缩放的方法,并提供了具体的代码实现。通过获取图片的宽高,计算目标宽度和高度,并创建新图实现等比例缩放。 ... [详细]
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
  • 图像因存在错误而无法显示 ... [详细]
  • Android自定义控件绘图篇之Paint函数大汇总
    本文介绍了Android自定义控件绘图篇中的Paint函数大汇总,包括重置画笔、设置颜色、设置透明度、设置样式、设置宽度、设置抗锯齿等功能。通过学习这些函数,可以更好地掌握Paint的用法。 ... [详细]
  • Linux服务器密码过期策略、登录次数限制、私钥登录等配置方法
    本文介绍了在Linux服务器上进行密码过期策略、登录次数限制、私钥登录等配置的方法。通过修改配置文件中的参数,可以设置密码的有效期、最小间隔时间、最小长度,并在密码过期前进行提示。同时还介绍了如何进行公钥登录和修改默认账户用户名的操作。详细步骤和注意事项可参考本文内容。 ... [详细]
  • SpringBoot uri统一权限管理的实现方法及步骤详解
    本文详细介绍了SpringBoot中实现uri统一权限管理的方法,包括表结构定义、自动统计URI并自动删除脏数据、程序启动加载等步骤。通过该方法可以提高系统的安全性,实现对系统任意接口的权限拦截验证。 ... [详细]
  • 本文分享了一个关于在C#中使用异步代码的问题,作者在控制台中运行时代码正常工作,但在Windows窗体中却无法正常工作。作者尝试搜索局域网上的主机,但在窗体中计数器没有减少。文章提供了相关的代码和解决思路。 ... [详细]
  • 本文介绍了一个Java猜拳小游戏的代码,通过使用Scanner类获取用户输入的拳的数字,并随机生成计算机的拳,然后判断胜负。该游戏可以选择剪刀、石头、布三种拳,通过比较两者的拳来决定胜负。 ... [详细]
  • 浏览器中的异常检测算法及其在深度学习中的应用
    本文介绍了在浏览器中进行异常检测的算法,包括统计学方法和机器学习方法,并探讨了异常检测在深度学习中的应用。异常检测在金融领域的信用卡欺诈、企业安全领域的非法入侵、IT运维中的设备维护时间点预测等方面具有广泛的应用。通过使用TensorFlow.js进行异常检测,可以实现对单变量和多变量异常的检测。统计学方法通过估计数据的分布概率来计算数据点的异常概率,而机器学习方法则通过训练数据来建立异常检测模型。 ... [详细]
  • 深入理解Kafka服务端请求队列中请求的处理
    本文深入分析了Kafka服务端请求队列中请求的处理过程,详细介绍了请求的封装和放入请求队列的过程,以及处理请求的线程池的创建和容量设置。通过场景分析、图示说明和源码分析,帮助读者更好地理解Kafka服务端的工作原理。 ... [详细]
  • Week04面向对象设计与继承学习总结及作业要求
    本文总结了Week04面向对象设计与继承的重要知识点,包括对象、类、封装性、静态属性、静态方法、重载、继承和多态等。同时,还介绍了私有构造函数在类外部无法被调用、static不能访问非静态属性以及该类实例可以共享类里的static属性等内容。此外,还提到了作业要求,包括讲述一个在网上商城购物或在班级博客进行学习的故事,并使用Markdown的加粗标记和语句块标记标注关键名词和动词。最后,还提到了参考资料中关于UML类图如何绘制的范例。 ... [详细]
  • Python使用Pillow包生成验证码图片的方法
    本文介绍了使用Python中的Pillow包生成验证码图片的方法。通过随机生成数字和符号,并添加干扰象素,生成一幅验证码图片。需要配置好Python环境,并安装Pillow库。代码实现包括导入Pillow包和随机模块,定义随机生成字母、数字和字体颜色的函数。 ... [详细]
author-avatar
吴素婷76625
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有