热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

golang字符串本质与原理详解【golang面试】

这篇文章主要介绍了golang字符串本质与原理详解,golang中的字符串指的是所有8比特位字节字符串的集合,通常是UTF-8编码的文本,更多相关内容需要

golang字符串本质与原理详解

一、字符串的本质

1.字符串的定义

golang中的字符(character)串指的是所有8比特位字节字符串的集合,通常(非必须)是UTF-8 编码的文本。 字符串可以为空,但不能是nil。 字符串在编译时即确定了长度,值是不可变的。

// go/src/builtin/builtin.go
// string is the set of all strings of 8-bit bytes, conventionally but not
// necessarily representing UTF-8-encoded text. A string may be empty, but
// not nil. Values of string type are immutable.
type string string

字符串在本质上是一串字符数组,每个字符在存储时都对应了一个或多个整数,整数是多少取决于字符集的编码方式。

s := "golang"
for i := 0; i 

字符串在编译时类型为string,在运行时其类型定义为一个结构体,位于reflect包中:

// go/src/reflect/value.go
// StringHeader is the runtime representation of a string.
// ...
type StringHeader struct {
    Data uintptr
    Len  int
}

根据运行时字符串的定义可知,在程序运行的过程中,字符串存储了长度(Len)及指向实际数据的指针(Data)。

2.字符串的长度

golang中所有文件都采用utf8编码,字符常量也使用utf8编码字符集。1个英文字母占1个字节长度,一个中文占3个字节长度。go中对字符串取长度len(s)指的是字节长度,而不是字符个数,这与动态语言如python中的表现有所差别。如:

print(len("go语言")) 
# 4
s := "go语言"
fmt.Printf("len(s): %v
", len(s)) 
// len(s): 8

3.字符与符文

go中存在一个特殊类型——符文类型(rune),用来表示和区分字符串中的字符。rune的本质是int32。字符串符文的个数往往才比较符合我们直观感受上的字符串长度。要计算字符串符文长度,可以先将字符串转为[]rune类型,或者利用标准库中的utf8.RuneCountInString()函数。

s := "go语言"
fmt.Println(len([]rune(s)))
// 4
count := utf8.RuneCountInString(s)
fmt.Println(count)
// 4

当用range遍历字符串时,遍历的就不再是单字节,而是单个符文rune

s := "go语言"
for _, r := range s {
    fmt.Printf("rune: %v  string: %#U
", r, r)
}
// rune: 103  unicode: U+0067 "g"
// rune: 111  unicode: U+006F "o"
// rune: 35821  unicode: U+8BED "语"
// rune: 35328  unicode: U+8A00 "言"

二、字符串的原理

1.字符串的解析

golang在词法解析阶段,通过扫描源代码,将双引号和反引号开头的内容分别识别为标准字符串和原始字符串:

// go/src/cmd/compile/internal/syntax/scanner.go
func (s *scanner) next() {
    ...
    switch s.ch {
    ...
    case """:
        s.stdString()

    case "`":
        s.rawString()
  ...

然后,不断的扫描下一个字符,直到遇到另一个双引号和反引号即结束扫描。并通过string(s.segment())将解析到的字节转换为字符串,同时通过setLlit()方法将扫描到的内容类型(kind)标记为StringLit

func (s *scanner) stdString() {
    ok := true
    s.nextch()

    for {
        if s.ch == """ {
            s.nextch()
            break
        }
        ...
        s.nextch()
    }

    s.setLit(StringLit, ok)
}
func (s *scanner) rawString() {
    ok := true
    s.nextch()

    for {
        if s.ch == "`" {
            s.nextch()
            break
        }
        ...
        s.nextch()
    }
  
    s.setLit(StringLit, ok)
}
// setLit sets the scanner state for a recognized _Literal token.
func (s *scanner) setLit(kind LitKind, ok bool) {
    s.nlsemi = true
    s.tok = _Literal
    s.lit = string(s.segment())
    s.bad = !ok
    s.kind = kind
}

2.字符串的拼接

字符串可以通过+进行拼接:

s := "go" + "lang"

在编译阶段构建抽象语法树时,等号右边的"go"+"lang"会被解析为一个字符串相加的表达式(AddStringExpr)节点,该表达式的操作opOADDSTR。相加的各部分字符串被解析为节点Node列表,并赋给表达式的List字段:

// go/src/cmd/compile/internal/ir/expr.go
// An AddStringExpr is a string concatenation Expr[0] + Exprs[1] + ... + Expr[len(Expr)-1].
type AddStringExpr struct {
    miniExpr
    List     Nodes
    Prealloc *Name
}
func NewAddStringExpr(pos src.XPos, list []Node) *AddStringExpr {
    n := &AddStringExpr{}
    n.pos = pos
    n.op = OADDSTR
    n.List = list
    return n
}

在构建抽象语法树时,会遍历整个语法树的表达式,在遍历的过程中,识别到操作Op的类型为OADDSTR,则会调用walkAddString对字符串加法表达式进行进一步处理:

// go/src/cmd/compile/internal/walk/expr.go
func walkExpr(n ir.Node, init *ir.Nodes) ir.Node {
    ...
    n = walkExpr1(n, init)
    ...
    return n
}
func walkExpr1(n ir.Node, init *ir.Nodes) ir.Node {
    switch n.Op() {
    ...
    case ir.OADDSTR:
        return walkAddString(n.(*ir.AddStringExpr), init)
    ...
    }
    ...
}

walkAddString首先计算相加的字符串的个数c,如果相加的字符串个数小于2,则会报错。接下来会对相加的字符串字节长度求和,如果字符串总字节长度小于32,则会通过stackBufAddr()在栈空间开辟一块32字节的缓存空间。否则会在堆区开辟一个足够大的内存空间,用于存储多个字符串。

// go/src/cmd/compile/internal/walk/walk.go
const tmpstringbufsize = 32
// go/src/cmd/compile/internal/walk/expr.go
func walkAddString(n *ir.AddStringExpr, init *ir.Nodes) ir.Node {
    c := len(n.List)
    if c <2 {
            base.Fatalf("walkAddString count %d too small", c)
    }
    buf := typecheck.NodNil()
    if n.Esc() == ir.EscNone {
        sz := int64(0)
        for _, n1 := range n.List {
            if n1.Op() == ir.OLITERAL {
                sz += int64(len(ir.StringVal(n1)))
            }
        }
        // Don"t allocate the buffer if the result won"t fit.
        if sz 

如果用于相加的字符串个数小于等于5个,则会调用运行时的字符串拼接concatstring1-concatstring5函数。否则调用运行时的concatstrings函数,并将字符串通过切片slice的形式传入。类型检查中的typecheck.LookupRuntime(fn)方法查找到运行时的字符串拼接函数后,将其构建为一个调用表达式,操作OpOCALL,最后遍历调用表达式完成调用。concatstring1-concatstring5中的每一个调用最终都会调用concatstrings函数。

// go/src/runtime/string.go
const tmpStringBufSize = 32
type tmpBuf [tmpStringBufSize]byte
func concatstring2(buf *tmpBuf, a0, a1 string) string {
    return concatstrings(buf, []string{a0, a1})
}
func concatstring3(buf *tmpBuf, a0, a1, a2 string) string {
    return concatstrings(buf, []string{a0, a1, a2})
}
func concatstring4(buf *tmpBuf, a0, a1, a2, a3 string) string {
    return concatstrings(buf, []string{a0, a1, a2, a3})
}
func concatstring5(buf *tmpBuf, a0, a1, a2, a3, a4 string) string {
    return concatstrings(buf, []string{a0, a1, a2, a3, a4})
}

concatstring1-concatstring5已经存在一个32字节的临时缓存空间供其使用, 并通过slicebytetostringtmp函数将该缓存空间的首地址作为字符串的地址,字节长度作为字符串的长度。如果待拼接字符串的长度大于32字节,则会调用rawstring函数,该函数会在堆区为字符串分配存储空间, 并且将该存储空间的地址指向字符串。由此可以看出,字符串的底层是字节切片,且指向同一片内存区域。在分配好存储空间、完成指针指向等工作后,待拼接的字符串切片会被一个一个地通过内存拷贝copy(b,x)到分配好的存储空间b上。

// concatstrings implements a Go string concatenation x+y+z+...
func concatstrings(buf *tmpBuf, a []string) string {
    ...
    l := 0

    for i, x := range a {
        ...
        n := len(x)
        ...
        l += n
        ...
    }
    s, b := rawstringtmp(buf, l)
    for _, x := range a {
        copy(b, x)
        b = b[len(x):]
    }
    return s
}
func rawstringtmp(buf *tmpBuf, l int) (s string, b []byte) {
    if buf != nil && l <= len(buf) {
        b = buf[:l]
        s = slicebytetostringtmp(&b[0], len(b))
    } else {
        s, b = rawstring(l)
    }
    return
}

func slicebytetostringtmp(ptr *byte, n int) (str string) {
    ...
    stringStructOf(&str).str = unsafe.Pointer(ptr)
    stringStructOf(&str).len = n
    return
}
// rawstring allocates storage for a new string. The returned
// string and byte slice both refer to the same storage.
func rawstring(size int) (s string, b []byte) {
    p := mallocgc(uintptr(size), nil, false)

    stringStructOf(&s).str = p
    stringStructOf(&s).len = size

    *(*slice)(unsafe.Pointer(&b)) = slice{p, size, size}

    return
}

type stringStruct struct {
    str unsafe.Pointer
    len int
}
func stringStructOf(sp *string) *stringStruct {
    return (*stringStruct)(unsafe.Pointer(sp))
}

3.字符串的转换

尽管字符串的底层是字节数组, 但字节数组与字符串的相互转换并不是简单的指针引用,而是涉及了内存复制。当字符串大于32字节时,还需要申请堆内存。

s := "go语言"
b := []byte(s) // stringtoslicebyte
ss := string(b) // slicebytetostring

当字符串转换为字节切片时,需要调用stringtoslicebyte函数,当字符串小于32字节时,可以直接使用缓存buf,但是当字节长度大于等于32时,rawbyteslice函数需要向堆区申请足够的内存空间,然后通过内存复制将字符串拷贝到目标地址。

// go/src/runtime/string.go
func stringtoslicebyte(buf *tmpBuf, s string) []byte {
    var b []byte
    if buf != nil && len(s) <= len(buf) {
        *buf = tmpBuf{}
        b = buf[:len(s)]
    } else {
        b = rawbyteslice(len(s))
    }
    copy(b, s)
    return b
}
func rawbyteslice(size int) (b []byte) {
    cap := roundupsize(uintptr(size))
    p := mallocgc(cap, nil, false)
    if cap != uintptr(size) {
        memclrNoHeapPointers(add(p, uintptr(size)), cap-uintptr(size))
    }

    *(*slice)(unsafe.Pointer(&b)) = slice{p, size, int(cap)}
    return
}
func slicebytetostring(buf *tmpBuf, ptr *byte, n int) (str string) {
    ...
    var p unsafe.Pointer
    if buf != nil && n <= len(buf) {
        p = unsafe.Pointer(buf)
    } else {
        p = mallocgc(uintptr(n), nil, false)
    }
    stringStructOf(&str).str = p
    stringStructOf(&str).len = n
    memmove(p, unsafe.Pointer(ptr), uintptr(n))
    return
}

字节切片转换为字符串时,原理同上。因此字符串和切片的转换涉及内存拷贝,在一些密集转换的场景中,需要评估转换带来的性能损耗。

总结

  • 字符串常量存储在静态存储区,其内容不可以被改变。
  • 字符串的本质是字符数组,底层是字节数组,且与字符串指向同一个内存地址。
  • 字符串的长度是字节长度,要获取直观长度,需要先转换为符文数组,或者通过utf8标准库的方法进行处理。
  • 字符串通过扫描源代码的双引号和反引号进行解析。
  • 字符串常量的拼接发生在编译时,且根据拼接字符串的个数调用了对应的运行时拼接函数。
  • 字符串变量的拼接发生在运行时。
  • 无论是字符串的拼接还是转换,当字符串长度小于32字节时,可以直接使用栈区32字节的缓存,反之,需要向堆区申请足够的存储空间。
  • 字符串与字节数组的相互转换并不是无损的指针引用,涉及到了内存复制。在转换密集的场景需要考虑转换的性能和空间损耗。

到此这篇关于golang字符串本质与原理详解的文章就介绍到这了,更多相关golang字符串 内容请搜索编程笔记以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程笔记!


推荐阅读
  • 本文介绍了使用哈夫曼树实现文件压缩和解压的方法。首先对数据结构课程设计中的代码进行了分析,包括使用时间调用、常量定义和统计文件中各个字符时相关的结构体。然后讨论了哈夫曼树的实现原理和算法。最后介绍了文件压缩和解压的具体步骤,包括字符统计、构建哈夫曼树、生成编码表、编码和解码过程。通过实例演示了文件压缩和解压的效果。本文的内容对于理解哈夫曼树的实现原理和应用具有一定的参考价值。 ... [详细]
  • eclipse学习(第三章:ssh中的Hibernate)——11.Hibernate的缓存(2级缓存,get和load)
    本文介绍了eclipse学习中的第三章内容,主要讲解了ssh中的Hibernate的缓存,包括2级缓存和get方法、load方法的区别。文章还涉及了项目实践和相关知识点的讲解。 ... [详细]
  • 本文介绍了设计师伊振华受邀参与沈阳市智慧城市运行管理中心项目的整体设计,并以数字赋能和创新驱动高质量发展的理念,建设了集成、智慧、高效的一体化城市综合管理平台,促进了城市的数字化转型。该中心被称为当代城市的智能心脏,为沈阳市的智慧城市建设做出了重要贡献。 ... [详细]
  • C语言注释工具及快捷键,删除C语言注释工具的实现思路
    本文介绍了C语言中注释的两种方式以及注释的作用,提供了删除C语言注释的工具实现思路,并分享了C语言中注释的快捷键操作方法。 ... [详细]
  • 本文介绍了如何在给定的有序字符序列中插入新字符,并保持序列的有序性。通过示例代码演示了插入过程,以及插入后的字符序列。 ... [详细]
  • 计算机存储系统的层次结构及其优势
    本文介绍了计算机存储系统的层次结构,包括高速缓存、主存储器和辅助存储器三个层次。通过分层存储数据可以提高程序的执行效率。计算机存储系统的层次结构将各种不同存储容量、存取速度和价格的存储器有机组合成整体,形成可寻址存储空间比主存储器空间大得多的存储整体。由于辅助存储器容量大、价格低,使得整体存储系统的平均价格降低。同时,高速缓存的存取速度可以和CPU的工作速度相匹配,进一步提高程序执行效率。 ... [详细]
  • Java中包装类的设计原因以及操作方法
    本文主要介绍了Java中设计包装类的原因以及操作方法。在Java中,除了对象类型,还有八大基本类型,为了将基本类型转换成对象,Java引入了包装类。文章通过介绍包装类的定义和实现,解答了为什么需要包装类的问题,并提供了简单易用的操作方法。通过本文的学习,读者可以更好地理解和应用Java中的包装类。 ... [详细]
  • SpringMVC接收请求参数的方式总结
    本文总结了在SpringMVC开发中处理控制器参数的各种方式,包括处理使用@RequestParam注解的参数、MultipartFile类型参数和Simple类型参数的RequestParamMethodArgumentResolver,处理@RequestBody注解的参数的RequestResponseBodyMethodProcessor,以及PathVariableMapMethodArgumentResol等子类。 ... [详细]
  • 从Oracle安全移植到国产达梦数据库的DBA实践与攻略
    随着我国对信息安全和自主可控技术的重视,国产数据库在党政机关、军队和大型央企等行业中得到了快速应用。本文介绍了如何降低从Oracle到国产达梦数据库的技术门槛,保障用户现有业务系统投资。具体包括分析待移植系统、确定移植对象、数据迁移、PL/SQL移植、校验移植结果以及应用系统的测试和优化等步骤。同时提供了移植攻略,包括待移植系统分析和准备移植环境的方法。通过本文的实践与攻略,DBA可以更好地完成Oracle安全移植到国产达梦数据库的工作。 ... [详细]
  • 本文介绍了一种在PHP中对二维数组根据某个字段进行排序的方法,以年龄字段为例,按照倒序的方式进行排序,并给出了具体的代码实现。 ... [详细]
  • 本文介绍了为什么要使用多进程处理TCP服务端,多进程的好处包括可靠性高和处理大量数据时速度快。然而,多进程不能共享进程空间,因此有一些变量不能共享。文章还提供了使用多进程实现TCP服务端的代码,并对代码进行了详细注释。 ... [详细]
  • 本文介绍了解决二叉树层序创建问题的方法。通过使用队列结构体和二叉树结构体,实现了入队和出队操作,并提供了判断队列是否为空的函数。详细介绍了解决该问题的步骤和流程。 ... [详细]
  • Python正则表达式学习记录及常用方法
    本文记录了学习Python正则表达式的过程,介绍了re模块的常用方法re.search,并解释了rawstring的作用。正则表达式是一种方便检查字符串匹配模式的工具,通过本文的学习可以掌握Python中使用正则表达式的基本方法。 ... [详细]
  • 动态规划算法的基本步骤及最长递增子序列问题详解
    本文详细介绍了动态规划算法的基本步骤,包括划分阶段、选择状态、决策和状态转移方程,并以最长递增子序列问题为例进行了详细解析。动态规划算法的有效性依赖于问题本身所具有的最优子结构性质和子问题重叠性质。通过将子问题的解保存在一个表中,在以后尽可能多地利用这些子问题的解,从而提高算法的效率。 ... [详细]
  • 自动轮播,反转播放的ViewPagerAdapter的使用方法和效果展示
    本文介绍了如何使用自动轮播、反转播放的ViewPagerAdapter,并展示了其效果。该ViewPagerAdapter支持无限循环、触摸暂停、切换缩放等功能。同时提供了使用GIF.gif的示例和github地址。通过LoopFragmentPagerAdapter类的getActualCount、getActualItem和getActualPagerTitle方法可以实现自定义的循环效果和标题展示。 ... [详细]
author-avatar
谢冬彬_868
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有