热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

也就是|小窗_卷积的特征提取与参数计算

篇首语:本文由编程笔记#小编为大家整理,主要介绍了卷积的特征提取与参数计算相关的知识,希望对你有一定的参考价值。Dense和Conv2D根本区别在于,Den

篇首语:本文由编程笔记#小编为大家整理,主要介绍了卷积的特征提取与参数计算相关的知识,希望对你有一定的参考价值。


Dense和Conv2D根本区别在于,Dense层从输入空间中学到的是全局模式,比如对于MNIST数字来说,全局模式就是涉及所有像素的模式。而Conv2D学到的是局部模式(local pattern),同样以MNIST为例,Conv2D学到的是在输入图像的小窗口中发现的模式(pattern)。

这个重要特性使卷积神经网络具有两个有趣的性质:

1. 卷积神经网络学到的模式具有平移不变性。卷积神经网络在图像右下角学到某个模式后,它可以在任何地方识别这个模式,比如左上角。但是对于Dense网络来说,如果模式出现在新的位置那么必须重新学习这个模式。这使得卷积神经网络在处理图像时可以更高效的利用数据。

2. 卷积神经网络可以学到模式的空间层次结构。如下图所示,第一个卷积层将学习较小的局部模式(比如边缘),第二个卷积层将学习由第一个层的特征们组成的更大的模式,以此类推,使得卷积神经网络可以学习越来越复杂,越来越抽象的视觉概念。

对于MINST,第一个卷积层接收一个大小为(28,28,1)的输入特征图。为了通过卷积从该输入特征图中提取不同的局部模式,我们要设计不同的卷积核。每个卷积核的大小宽高多为3*3或者5*5,卷积核的深度与输入特征图的深度一致,卷积核的个数与这一层需要获得的局部模式数量一致。每一个卷积核也成为一个滤波器,通过滤波器的过滤(filter),就学到了一个局部模式(特征)。例如,我设计的第一个卷积层希望从这张图片中获取32种局部模式,那么我就要设计32个(3*3*1)的卷积核,经过第一层过滤后,会形成一个(26*26*32)的输出特征图。每个过滤器与输入特征图进行卷积运算会得到一个(26*26)的响应图(response map),32个过滤器就会得到(26*26*32)这样输出特征图。

所以,特征图深度方向上的每一个维度都是一个特征(过滤器),而每一个维度上的2D张量是该维度过滤器对输入的响应所形成的二维空间图(map)。

 现在,对第一次卷积层得到的(26*26*32)特征图进行一次最大值池化(MaxPooling),经过池化的特征数量变为(13*13*32)。随后设计第二个卷积层,对于第二个卷积层而言输入的特征图就是(13,13,32),那么第二个卷积层的卷积核深度也应该是32,也就是(3,3,32),比如第二个卷积层我想提取64个特征,那么就意味着这一层经过运算后,输出的特征图为(11,11,64),随后是针对第二层卷积输出的最大值池化,经过池化的特征数量变为(5,5,64),然后可以设计第三个卷积层,那么根据输入特征图的深度,第三个卷积层的卷积核深度为64,也就是(3,3,64),比如第三个卷积层我也想提取64个特征,那么就意味着这一层经过运算后,输出的特征图为(3,3,64)。经过第三次卷积后,将输出内容可以与Dense层连接,然后分类输出。当然在于Dense层连接前,需要将3维数据“抻平”,变为一维数据才能输入到Dense层。最终我们以代码的形式来设计一下文中所述的神经网络:

from tensorflow import keras
from tensorflow.keras import models
from tensorflow.keras import layers
from tensorflow.keras import datasets
from tensorflow.keras import utils
mymodel = models.Sequential()
mymodel.add(layers.Conv2D(32,(3,3),activation='relu',input_shape=(28,28,1)))
mymodel.add(layers.MaxPooling2D(2,2))
mymodel.add(layers.Conv2D(64,(3,3),activation='relu'))
mymodel.add(layers.MaxPooling2D(2,2))
mymodel.add(layers.Conv2D(64,(3,3),activation='relu'))
mymodel.add(layers.Flatten())
mymodel.add(layers.Dense(64,activation='relu'))
mymodel.add(layers.Dense(10,activation='softmax'))
mymodel.summary()

 模型的summary函数会返回每个层的参数量:



_________________________________________________________________
 Layer (type)                Output Shape              Param #
=================================================================
 conv2d (Conv2D)             (None, 26, 26, 32)        320


 max_pooling2d (MaxPooling2D  (None, 13, 13, 32)       0
 )


 conv2d_1 (Conv2D)           (None, 11, 11, 64)        18496


 max_pooling2d_1 (MaxPooling  (None, 5, 5, 64)         0
 2D)


 conv2d_2 (Conv2D)           (None, 3, 3, 64)          36928


 flatten (Flatten)           (None, 576)               0


 dense (Dense)               (None, 64)                36928


 dense_1 (Dense)             (None, 10)                650


如果能理解卷积网络层中核的形状和个数,那么每一层的参数就不难理解了。



 conv2d (Conv2D)             (None, 26, 26, 32)        320


第一个卷积层的卷积核大小为(3,3,1),共32个,所以w = 3*3*1*32 = 288,有w就会有偏置b,一维向量共32个元素。所以一共有320个参数。 



 conv2d_1 (Conv2D)           (None, 11, 11, 64)        18496


第二个卷积层的卷积核大小为(3,3,32),共64个,所以w = 3 * 3 *32 * 64 =  18432,还有偏置b中的64个变量,所以一共有18496个参数。



 conv2d_2 (Conv2D)           (None, 3, 3, 64)          36928


第三个卷积层的卷积核大小为(3,3,64),共64个,所以w = 3 * 3 *64 * 64 =  36864,还有偏置b中的64个变量,所以一共有36928个参数。



 dense (Dense)               (None, 64)                36928


输入层维度为576(把(3,3,64)给抻平),输出层维度是64,所以w是 576*64 = 36864,再加上偏置向量中的64个元素,所以一共有36928个参数。



 dense_1 (Dense)             (None, 10)                650


最后一个Dense层,输入为64,输出是10,所以w是64*10 = 640,最后再加上10个偏置,所以一共有650个参数。

整个神经网络的参数总数为93322个。

(train_img,train_labels),(test_img,test_labels) = datasets.mnist.load_data()
train_img = train_img.reshape((60000,28,28,1))
train_img = train_img.astype('float32')/255
test_img = test_img.reshape((10000,28,28,1))
test_img = test_img.astype('float32')/255
train_labels = utils.to_categorical(train_labels)
test_labels = utils.to_categorical(test_labels)
mymodel.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])
mymodel.fit(train_img,train_labels,epochs=5,batch_size=64)
myloss,myaccuracy =mymodel.evaluate(test_img,test_labels)
print(f'模型测试准确率:myaccuracy')

最终在测试集上得到的准确率为0.9912999868392944。

相较于单纯使用Dense进行组网准确率还是有明显上升的(纯Dense组网的准确率在97%以上)。


推荐阅读
  • 深度强化学习Policy Gradient基本实现
    全文共2543个字,2张图,预计阅读时间15分钟。基于值的强化学习算法的基本思想是根据当前的状态,计算采取每个动作的价值,然 ... [详细]
  • DNNBrain:北师大团队出品,国内首款用于映射深层神经网络到大脑的统一工具箱...
    导读深度神经网络(DNN)通过端到端的深度学习策略在许多具有挑战性的任务上达到了人类水平的性能。深度学习产生了具有多层抽象层次的数据表示;然而,它没有明确地提供任何关 ... [详细]
  • 推荐系统遇上深度学习(十七)详解推荐系统中的常用评测指标
    原创:石晓文小小挖掘机2018-06-18笔者是一个痴迷于挖掘数据中的价值的学习人,希望在平日的工作学习中,挖掘数据的价值, ... [详细]
  • NSSROUND#8[Basic]
    文章目录一、[NSSRound#8Basic]MyDoor二、[NSSRound#8Basic]Upload_gogoggo三、[NSSRound#8Basic]MyPage四、[ ... [详细]
  • 文本生成图像简要回顾 text to image synthesis
    摘要       文本生成图像作为近几年的热门研究领域,其解决的问题是从一句描述性文本生成与之对应的图片。近一周来,我通过阅读了近几年发表于顶会的近10篇论文,做出本文中对该方向的 ... [详细]
  • AI 学习路线:从Python开始机器学习
    AI 学习路线:从Python开始机器学习 ... [详细]
  • 每日一书丨AI圣经《深度学习》作者斩获2018年图灵奖
    2019年3月27日——ACM宣布,深度学习之父YoshuaBengio,YannLeCun,以及GeoffreyHinton获得了2018年的图灵奖, ... [详细]
  • NLP | 一文完全搞懂序列标注算法
    序列标注模型用到了长短期记忆网络(LSTM),条件随机场(CRF),Highway网络,本文循序渐进的介绍了序列标注算法,Bepatience!跟 ... [详细]
  • 大家好,我们是慢雾安全团队。 ... [详细]
  • One Stage目标检测
    在计算机视觉中,目标检测是一个难题。在大型项目中,首先需要先进行目标检测,得到对应类别和坐标后,才进行之后的各种分析。如人脸识别,通常是首先人脸检测,得到人脸的目标框,再对此目标框 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • 浏览器中的异常检测算法及其在深度学习中的应用
    本文介绍了在浏览器中进行异常检测的算法,包括统计学方法和机器学习方法,并探讨了异常检测在深度学习中的应用。异常检测在金融领域的信用卡欺诈、企业安全领域的非法入侵、IT运维中的设备维护时间点预测等方面具有广泛的应用。通过使用TensorFlow.js进行异常检测,可以实现对单变量和多变量异常的检测。统计学方法通过估计数据的分布概率来计算数据点的异常概率,而机器学习方法则通过训练数据来建立异常检测模型。 ... [详细]
  • 微软头条实习生分享深度学习自学指南
    本文介绍了一位微软头条实习生自学深度学习的经验分享,包括学习资源推荐、重要基础知识的学习要点等。作者强调了学好Python和数学基础的重要性,并提供了一些建议。 ... [详细]
  • 不同优化算法的比较分析及实验验证
    本文介绍了神经网络优化中常用的优化方法,包括学习率调整和梯度估计修正,并通过实验验证了不同优化算法的效果。实验结果表明,Adam算法在综合考虑学习率调整和梯度估计修正方面表现较好。该研究对于优化神经网络的训练过程具有指导意义。 ... [详细]
  • 本文介绍了腾讯最近开源的BERT推理模型TurboTransformers,该模型在推理速度上比PyTorch快1~4倍。TurboTransformers采用了分层设计的思想,通过简化问题和加速开发,实现了快速推理能力。同时,文章还探讨了PyTorch在中间层延迟和深度神经网络中存在的问题,并提出了合并计算的解决方案。 ... [详细]
author-avatar
mobiledu2502856013
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有