热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

TensorFlow实现模型评估

这篇文章主要为大家详细介绍了TensorFlow实现模型评估,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

我们需要评估模型预测值来评估训练的好坏。

模型评估是非常重要的,随后的每个模型都有模型评估方式。使用TensorFlow时,需要把模型评估加入到计算图中,然后在模型训练完后调用模型评估。

在训练模型过程中,模型评估能洞察模型算法,给出提示信息来调试、提高或者改变整个模型。但是在模型训练中并不是总需要模型评估,我们将展示如何在回归算法和分类算法中使用它。

训练模型之后,需要定量评估模型的性能如何。在理想情况下,评估模型需要一个训练数据集和测试数据集,有时甚至需要一个验证数据集。

想评估一个模型时就得使用大批量数据点。如果完成批量训练,我们可以重用模型来预测批量数据点。但是如果要完成随机训练,就不得不创建单独的评估器来处理批量数据点。

分类算法模型基于数值型输入预测分类值,实际目标是1和0的序列。我们需要度量预测值与真实值之间的距离。分类算法模型的损失函数一般不容易解释模型好坏,所以通常情况是看下准确预测分类的结果的百分比。

不管算法模型预测的如何,我们都需要测试算法模型,这点相当重要。在训练数据和测试数据上都进行模型评估,以搞清楚模型是否过拟合。

# TensorFlowm模型评估
#
# This code will implement two models. The first
# is a simple regression model, we will show how to
# call the loss function, MSE during training, and
# output it after for test and training sets.
#
# The second model will be a simple classification
# model. We will also show how to print percent
# classified correctly during training and after
# for both the test and training sets.

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph()

# 创建计算图
sess = tf.Session()

# 回归例子:
# We will create sample data as follows:
# x-data: 100 random samples from a normal ~ N(1, 0.1)
# target: 100 values of the value 10.
# We will fit the model:
# x-data * A = target
# 理论上, A = 10.

# 声明批量大小
batch_size = 25

# 创建数据集
x_vals = np.random.normal(1, 0.1, 100)
y_vals = np.repeat(10., 100)
x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

# 八二分训练/测试数据 train/test = 80%/20%
train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

# 创建变量 (one model parameter = A)
A = tf.Variable(tf.random_normal(shape=[1,1]))

# 增加操作到计算图
my_output = tf.matmul(x_data, A)

# 增加L2损失函数到计算图
loss = tf.reduce_mean(tf.square(my_output - y_target))

# 创建优化器
my_opt = tf.train.GradientDescentOptimizer(0.02)
train_step = my_opt.minimize(loss)

# 初始化变量
init = tf.global_variables_initializer()
sess.run(init)

# 迭代运行
# 如果在损失函数中使用的模型输出结果经过转换操作,例如,sigmoid_cross_entropy_with_logits()函数,
# 为了精确计算预测结果,别忘了在模型评估中也要进行转换操作。
for i in range(100):
  rand_index = np.random.choice(len(x_vals_train), size=batch_size)
  rand_x = np.transpose([x_vals_train[rand_index]])
  rand_y = np.transpose([y_vals_train[rand_index]])
  sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
  if (i+1)%25==0:
    print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)))
    print('Loss = ' + str(sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})))

# 评估准确率(loss)
mse_test = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_test]), y_target: np.transpose([y_vals_test])})
mse_train = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_train]), y_target: np.transpose([y_vals_train])})
print('MSE on test:' + str(np.round(mse_test, 2)))
print('MSE on train:' + str(np.round(mse_train, 2)))

# 分类算法案例
# We will create sample data as follows:
# x-data: sample 50 random values from a normal = N(-1, 1)
#     + sample 50 random values from a normal = N(1, 1)
# target: 50 values of 0 + 50 values of 1.
#     These are essentially 100 values of the corresponding output index
# We will fit the binary classification model:
# If sigmoid(x+A) <0.5 -> 0 else 1
# Theoretically, A should be -(mean1 + mean2)/2

# 重置计算图
ops.reset_default_graph()

# 加载计算图
sess = tf.Session()

# 声明批量大小
batch_size = 25

# 创建数据集
x_vals = np.concatenate((np.random.normal(-1, 1, 50), np.random.normal(2, 1, 50)))
y_vals = np.concatenate((np.repeat(0., 50), np.repeat(1., 50)))
x_data = tf.placeholder(shape=[1, None], dtype=tf.float32)
y_target = tf.placeholder(shape=[1, None], dtype=tf.float32)

# 分割数据集 train/test = 80%/20%
train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

# 创建变量 (one model parameter = A)
A = tf.Variable(tf.random_normal(mean=10, shape=[1]))

# Add operation to graph
# Want to create the operstion sigmoid(x + A)
# Note, the sigmoid() part is in the loss function
my_output = tf.add(x_data, A)

# 增加分类损失函数 (cross entropy)
xentropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=my_output, labels=y_target))

# Create Optimizer
my_opt = tf.train.GradientDescentOptimizer(0.05)
train_step = my_opt.minimize(xentropy)

# Initialize variables
init = tf.global_variables_initializer()
sess.run(init)

# 运行迭代
for i in range(1800):
  rand_index = np.random.choice(len(x_vals_train), size=batch_size)
  rand_x = [x_vals_train[rand_index]]
  rand_y = [y_vals_train[rand_index]]
  sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
  if (i+1)%200==0:
    print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)))
    print('Loss = ' + str(sess.run(xentropy, feed_dict={x_data: rand_x, y_target: rand_y})))

# 评估预测
# 用squeeze()函数封装预测操作,使得预测值和目标值有相同的维度。
y_prediction = tf.squeeze(tf.round(tf.nn.sigmoid(tf.add(x_data, A))))
# 用equal()函数检测是否相等,
# 把得到的true或false的boolean型张量转化成float32型,
# 再对其取平均值,得到一个准确度值。
correct_prediction = tf.equal(y_prediction, y_target)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
acc_value_test = sess.run(accuracy, feed_dict={x_data: [x_vals_test], y_target: [y_vals_test]})
acc_value_train = sess.run(accuracy, feed_dict={x_data: [x_vals_train], y_target: [y_vals_train]})
print('Accuracy on train set: ' + str(acc_value_train))
print('Accuracy on test set: ' + str(acc_value_test))

# 绘制分类结果
A_result = -sess.run(A)
bins = np.linspace(-5, 5, 50)
plt.hist(x_vals[0:50], bins, alpha=0.5, label='N(-1,1)', color='white')
plt.hist(x_vals[50:100], bins[0:50], alpha=0.5, label='N(2,1)', color='red')
plt.plot((A_result, A_result), (0, 8), 'k--', lineA = '+ str(np.round(A_result, 2)))
plt.legend(loc='upper right')
plt.title('Binary Classifier, Accuracy=' + str(np.round(acc_value_test, 2)))
plt.show()

输出:

Step #25 A = [[ 5.79096079]]
Loss = 16.8725
Step #50 A = [[ 8.36085415]]
Loss = 3.60671
Step #75 A = [[ 9.26366138]]
Loss = 1.05438
Step #100 A = [[ 9.58914948]]
Loss = 1.39841
MSE on test:1.04
MSE on train:1.13
Step #200 A = [ 5.83126402]
Loss = 1.9799
Step #400 A = [ 1.64923656]
Loss = 0.678205
Step #600 A = [ 0.12520729]
Loss = 0.218827
Step #800 A = [-0.21780498]
Loss = 0.223919
Step #1000 A = [-0.31613481]
Loss = 0.234474
Step #1200 A = [-0.33259964]
Loss = 0.237227
Step #1400 A = [-0.28847221]
Loss = 0.345202
Step #1600 A = [-0.30949864]
Loss = 0.312794
Step #1800 A = [-0.33211425]
Loss = 0.277342
Accuracy on train set: 0.9625
Accuracy on test set: 1.0

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


推荐阅读
  • 学习一门编程语言,除了语法,最重要的是学习解决问题。很多时候单凭自己的能力确实无法做到完美解决,所以无论是搜索引擎、社区、文档还是博客&# ... [详细]
  • 开源Keras Faster RCNN模型介绍及代码结构解析
    本文介绍了开源Keras Faster RCNN模型的环境需求和代码结构,包括FasterRCNN源码解析、RPN与classifier定义、data_generators.py文件的功能以及损失计算。同时提供了该模型的开源地址和安装所需的库。 ... [详细]
  • Win10+Python3.7+Tensorflow安装
    Win10+Python3.7+Tensorflow安装Step1:安装AnacondaStep2:Tensorflow的安装转载请注明出处:https:blog.csdn.net ... [详细]
  • 「爆干7天7夜」入门AI人工智能学习路线一条龙,真的不能再透彻了
    前言应广大粉丝要求,今天迪迦来和大家讲解一下如何去入门人工智能,也算是迪迦对自己学习人工智能这么多年的一个总结吧,本条学习路线并不会那么 ... [详细]
  • YOLOv7基于自己的数据集从零构建模型完整训练、推理计算超详细教程
    本文介绍了关于人工智能、神经网络和深度学习的知识点,并提供了YOLOv7基于自己的数据集从零构建模型完整训练、推理计算的详细教程。文章还提到了郑州最低生活保障的话题。对于从事目标检测任务的人来说,YOLO是一个熟悉的模型。文章还提到了yolov4和yolov6的相关内容,以及选择模型的优化思路。 ... [详细]
  • 学习SLAM的女生,很酷
    本文介绍了学习SLAM的女生的故事,她们选择SLAM作为研究方向,面临各种学习挑战,但坚持不懈,最终获得成功。文章鼓励未来想走科研道路的女生勇敢追求自己的梦想,同时提到了一位正在英国攻读硕士学位的女生与SLAM结缘的经历。 ... [详细]
  • 云原生边缘计算之KubeEdge简介及功能特点
    本文介绍了云原生边缘计算中的KubeEdge系统,该系统是一个开源系统,用于将容器化应用程序编排功能扩展到Edge的主机。它基于Kubernetes构建,并为网络应用程序提供基础架构支持。同时,KubeEdge具有离线模式、基于Kubernetes的节点、群集、应用程序和设备管理、资源优化等特点。此外,KubeEdge还支持跨平台工作,在私有、公共和混合云中都可以运行。同时,KubeEdge还提供数据管理和数据分析管道引擎的支持。最后,本文还介绍了KubeEdge系统生成证书的方法。 ... [详细]
  • Android中高级面试必知必会,积累总结
    本文介绍了Android中高级面试的必知必会内容,并总结了相关经验。文章指出,如今的Android市场对开发人员的要求更高,需要更专业的人才。同时,文章还给出了针对Android岗位的职责和要求,并提供了简历突出的建议。 ... [详细]
  • Centos7.6安装Gitlab教程及注意事项
    本文介绍了在Centos7.6系统下安装Gitlab的详细教程,并提供了一些注意事项。教程包括查看系统版本、安装必要的软件包、配置防火墙等步骤。同时,还强调了使用阿里云服务器时的特殊配置需求,以及建议至少4GB的可用RAM来运行GitLab。 ... [详细]
  • [译]技术公司十年经验的职场生涯回顾
    本文是一位在技术公司工作十年的职场人士对自己职业生涯的总结回顾。她的职业规划与众不同,令人深思又有趣。其中涉及到的内容有机器学习、创新创业以及引用了女性主义者在TED演讲中的部分讲义。文章表达了对职业生涯的愿望和希望,认为人类有能力不断改善自己。 ... [详细]
  • 无损压缩算法专题——LZSS算法实现
    本文介绍了基于无损压缩算法专题的LZSS算法实现。通过Python和C两种语言的代码实现了对任意文件的压缩和解压功能。详细介绍了LZSS算法的原理和实现过程,以及代码中的注释。 ... [详细]
  • 推荐系统遇上深度学习(十七)详解推荐系统中的常用评测指标
    原创:石晓文小小挖掘机2018-06-18笔者是一个痴迷于挖掘数据中的价值的学习人,希望在平日的工作学习中,挖掘数据的价值, ... [详细]
  • 解决Cydia数据库错误:could not open file /var/lib/dpkg/status 的方法
    本文介绍了解决iOS系统中Cydia数据库错误的方法。通过使用苹果电脑上的Impactor工具和NewTerm软件,以及ifunbox工具和终端命令,可以解决该问题。具体步骤包括下载所需工具、连接手机到电脑、安装NewTerm、下载ifunbox并注册Dropbox账号、下载并解压lib.zip文件、将lib文件夹拖入Books文件夹中,并将lib文件夹拷贝到/var/目录下。以上方法适用于已经越狱且出现Cydia数据库错误的iPhone手机。 ... [详细]
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
  • 【MicroServices】【Arduino】装修甲醛检测,ArduinoDart甲醛、PM2.5、温湿度、光照传感器等,数据记录于SD卡,Python数据显示,UI5前台,微服务后台……
    这篇文章介绍了一个基于Arduino的装修甲醛检测项目,使用了ArduinoDart甲醛、PM2.5、温湿度、光照传感器等硬件,并将数据记录于SD卡,使用Python进行数据显示,使用UI5进行前台设计,使用微服务进行后台开发。该项目还在不断更新中,有兴趣的可以关注作者的博客和GitHub。 ... [详细]
author-avatar
撩人的东莞博文
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有