热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

算法TOPK(BFPRT算法)JAVA版本

一、背景在一大堆数中求其前k大或前k小的问题,简称TOP-K问题。而目前解决TOP-K问题最有效的算法即是BFPRT算法,其又称为中位数的中位数算法&

一、背景

在一大堆数中求其前k大或前k小的问题,简称TOP-K问题。而目前解决TOP-K问题最有效的算法即是BFPRT算法,其又称为中位数的中位数算法,该算法由Blum、Floyd、Pratt、Rivest、Tarjan提出,最坏时间复杂度为O(n)O(n)。

在首次接触TOP-K问题时,我们的第一反应就是可以先对所有数据进行一次排序,然后取其前k即可,但是这么做有两个问题: 
(1):快速排序的平均复杂度为O(nlogn)O(nlogn),但最坏时间复杂度为O(n2)O(n2),不能始终保证较好的复杂度。 
(2):我们只需要前k大的,而对其余不需要的数也进行了排序,浪费了大量排序时间。

除这种方法之外,堆排序也是一个比较好的选择,可以维护一个大小为k的堆,时间复杂度为O(nlogk)O(nlogk)。

那是否还存在更有效的方法呢?受到快速排序的启发,通过修改快速排序中主元的选取方法可以降低快速排序在最坏情况下的时间复杂度(即BFPRT算法),并且我们的目的只是求出前k,故递归的规模变小,速度也随之提高。下面来简单回顾下快速排序的过程,以升序为例: 
(1):选取主元(首元素,尾元素或一个随机元素); 
(2):以选取的主元为分界点,把小于主元的放在左边,大于主元的放在右边; 
(3):分别对左边和右边进行递归,重复上述过程。
原文链接:https://blog.csdn.net/laojiu_/article/details/54986553

    仅用荷兰国旗算法也能达到数学期望为O(N)的时间复杂度,但是也有可能存在O(N2)的最差情况,BFPRT就是在荷兰国旗算法的基础上,加入寻找一个好的中位数,让时间复杂度稳定在O(N)

二、算法套路

BFPRT算法套路
1. 对整个数组进行分组,每组5个数,不满5个的凑成最后一组
2.对每个组进行组内排序, 时间复杂度O(N)
    为什么时间复杂度O(N),解释:
    排序算法时间复杂度为O(NlogN), 当N等于5时候,即为O(1)
    对N/5个数组进行排序,所以时间复杂度为O(N)
3.拿出排序后的每个数组的中位数,组成一个新的N/5长度数组
4.递归掉BFPRT
5.拿到BFPRT的返回的num, 小于放左边,等于放中间,大于放右边。即快排里的荷兰国旗pattition算法。

伪代码:

int bfprt(int[] arr, int k){
    1.
    2.
    3.生成一个N/5大小的new_arr
    4.bfprt(new_arr, new_arr.length/2);
    5.
}

三、代码

public static int[] getMinKNumsByBFPRT(int[] arr, int k) {if (k <1 || k > arr.length) {return arr;}int minKth &#61; getMinKthByBFPRT(arr, k);int[] res &#61; new int[k];int index &#61; 0;for (int i &#61; 0; i !&#61; arr.length; i&#43;&#43;) {if (arr[i] &#61; pivotRange[0] && i <&#61; pivotRange[1]) {return arr[i];} else if (i pivotValue) {swap(arr, cur, --big);} else {cur&#43;&#43;;}}int[] range &#61; new int[2];range[0] &#61; small &#43; 1;range[1] &#61; big - 1;return range;}public static int getMedian(int[] arr, int begin, int end) {insertionSort(arr, begin, end);int sum &#61; end &#43; begin;int mid &#61; (sum / 2) &#43; (sum % 2);return arr[mid];}public static void insertionSort(int[] arr, int begin, int end) {for (int i &#61; begin &#43; 1; i !&#61; end &#43; 1; i&#43;&#43;) {for (int j &#61; i; j !&#61; begin; j--) {if (arr[j - 1] > arr[j]) {swap(arr, j - 1, j);} else {break;}}}}public static void swap(int[] arr, int index1, int index2) {int tmp &#61; arr[index1];arr[index1] &#61; arr[index2];arr[index2] &#61; tmp;}public static void printArray(int[] arr) {for (int i &#61; 0; i !&#61; arr.length; i&#43;&#43;) {System.out.print(arr[i] &#43; " ");}System.out.println();}public static void main(String[] args) {int[] arr &#61; { 6, 9, 1, 3, 1, 2, 2, 5, 6, 1, 3, 5, 9, 7, 2, 5, 6, 1, 9 };// sorted : { 1, 1, 1, 1, 2, 2, 2, 3, 3, 5, 5, 5, 6, 6, 6, 7, 9, 9, 9 }printArray(getMinKNumsByBFPRT(arr, 10));}

 


推荐阅读
  • Java 类成员初始化顺序与数组创建
    本文探讨了Java中类成员的初始化顺序、静态引入、可变参数以及finalize方法的应用。通过具体的代码示例,详细解释了这些概念及其在实际编程中的使用。 ... [详细]
  • 本文详细探讨了KMP算法中next数组的构建及其应用,重点分析了未改良和改良后的next数组在字符串匹配中的作用。通过具体实例和代码实现,帮助读者更好地理解KMP算法的核心原理。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • golang常用库:配置文件解析库/管理工具viper使用
    golang常用库:配置文件解析库管理工具-viper使用-一、viper简介viper配置管理解析库,是由大神SteveFrancia开发,他在google领导着golang的 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • Java 中 Writer flush()方法,示例 ... [详细]
  • 本文介绍了如何使用 Spring Boot DevTools 实现应用程序在开发过程中自动重启。这一特性显著提高了开发效率,特别是在集成开发环境(IDE)中工作时,能够提供快速的反馈循环。默认情况下,DevTools 会监控类路径上的文件变化,并根据需要触发应用重启。 ... [详细]
  • Java 中的 BigDecimal pow()方法,示例 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 主要用了2个类来实现的,话不多说,直接看运行结果,然后在奉上源代码1.Index.javaimportjava.awt.Color;im ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 本文详细介绍了 Dockerfile 的编写方法及其在网络配置中的应用,涵盖基础指令、镜像构建与发布流程,并深入探讨了 Docker 的默认网络、容器互联及自定义网络的实现。 ... [详细]
  • 在金融和会计领域,准确无误地填写票据和结算凭证至关重要。这些文件不仅是支付结算和现金收付的重要依据,还直接关系到交易的安全性和准确性。本文介绍了一种使用C语言实现小写金额转换为大写金额的方法,确保数据的标准化和规范化。 ... [详细]
author-avatar
国民男神-权志龙
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有