热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

使用FLASKRESTAPI的机器学习模型

在本教程中,我们将看到如何使用FLASK制作第一个用于机器学习模型的RESTAPI。我们将从创建机器学习模型开始。然后,我们将看到使用Flask创建AP

在本教程中,我们将看到如何使用FLASK制作第一个用于机器学习模型的REST API。 我们将从创建机器学习模型开始。 然后,我们将看到使用Flask创建API并使用Postman对其进行测试的分步过程。

第1部分:创建机器学习模型

我们需要做的第一件事是导入必要的库。 导入必要的库后,我们将需要导入数据。 在这个项目中,我们将使用Boston Housing数据集,可以从sklearn.datasets下载。

# importing necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import metrics# importing dataset from sklearn
from sklearn.datasets import load_boston
boston_data = load_boston()# initializing dataset
data_ = pd.DataFrame(boston_data.data)### Top five rows of dataset
data_.head()

当前,我们的数据集没有任何功能名称。 因此,我们将需要为数据集导入特征名称。

# Adding features names to the dataframe
data_.columns = boston_data.feature_names
data_.head()

预处理数据

我们要预测的变量是价格。 因此,我们现在将为我们的机器学习模型创建目标变量。

# Target feature of Boston Housing data
data_[ 'PRICE' ] = boston_data.target

现在,我们将检查我们的任何功能是否为null和分类。 这是因为空值会导致偏差估计,机器学习模型需要数值而不是分类数值。

# checking null values
data_.isnull().sum()

未找到空值,因此按原样保留要素。 现在,让我们检查是否存在任何分类值。

# checking if values are categorical or not
data_.info()

我们可以看到所有特征都是数字。 因此,现在我们将创建模型。

建立模型

首先,我们需要将特征和目标变量分开。 然后将数据集分为训练和测试集。 最后创建一个模型。

# creating feature and target variable
X = data_.drop([ 'PRICE' ], axis= 1 )
y = data_[ 'PRICE' ]# splitting into training and testing set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size= 0.2 , random_state= 1 )
print( "X training shape : " , X_train.shape )
print( "X test shape : " , X_test.shape )
print( "y training shape :“ , y_train.shape )
print(" y test shape :”, y_test.shape )# creating model
from sklearn.ensemble import RandomForestRegressor
classifier = RandomForestRegressor()
classifier.fit(X_train, y_train)

现在,让我们评估用于训练和测试集的模型的性能。

# Model evaluation for training data
prediction = classifier.predict(X_train)
print( "r^2 : " , metrics.r2_score(y_train, prediction))
print( "Mean Absolute Error: " , metrics.mean_absolute_error(y_train, prediction))
print( "Mean Squared Error: " , metrics.mean_squared_error(y_train, prediction))
print( "Root Mean Squared Error : " , np.sqrt(metrics.mean_squared_error(y_train, prediction)))# Model evaluation for testing data
prediction_test = classifier.predict(X_test)
print( "r^2 : " , metrics.r2_score(y_test, prediction_test))
print( "Mean Absolute Error : " , metrics.mean_absolute_error(y_test, prediction_test))
print( "Mean Squared Error : " , metrics.mean_squared_error(y_test, prediction_test))
print( "Root Mean Absolute Error : " , np.sqrt(metrics.mean_squared_error(y_test, prediction_test)))

第2部分:保存和使用机器学习模型

我们将使用pickle保存模型。 序列化和反序列化机制有助于将机器学习对象模型保存到字节流中,反之亦然。 模型将保存在model文件夹下。 该项目的工作结构在第3部分中显示。

# saving the model
import pickle
with open( 'model/model.pkl' , 'wb' ) as file:pickle.dump(classifier, file)# saving the columns
model_columns = list(X.columns)
with open( 'model/model_columns.pkl' , 'wb' ) as file:pickle.dump(model_columns, file)

第3部分:使用Flask创建用于机器学习的API

成功创建机器学习模型之后。 我们将需要在Flask中创建一个网络服务器。 Flask是轻量级的Web应用程序,易于使用并可以扩展到复杂的应用程序。 本教程介绍Flask应用程序的基本实现,即制作Web服务器和简单的REST API。

这是整个项目的组织方式:

要使用Flask,请先创建一个文件夹名称webapp,然后在终端中使用以下命令在其内部安装flask。 确保烧瓶位于webapp文件夹中。

>> pip install Flask

使用Flask可以生成最少的Web应用程序。 以下代码将创建一个简单的Web应用程序,该应用程序将重定向到指定的URL以产生给定的结果。

from flask import Flaskapp = Flask(__name__)@app.route('/', methods=['GET', 'POST'])
def main () :return "Boston House Price Prediction”if __name__ == " __main__ ":app.run()

运行应用

要在本地计算机上启动Flask服务器,请导航至webapp文件夹并在终端中运行命令。

>> export FLASK_APP=app.py
>> export FLASK_ENV=development
>> flask run

这将执行应用程序。 现在导航到Web浏览器( localhost:5000 )以查看结果。 最终结果如下所示:

让我们将所有代码放在一起,以检查是否错过了任何内容。 所有文件都分为.py文件。 因此,完整的app.py文件应如下所示:

from flask import render_template, request, jsonify
import flask
import numpy as np
import traceback
import pickle
import pandas as pd# App definition
app = Flask(__name__,template_folder= 'templates' )# importing models
with open( 'webapp/model/model.pkl' , 'rb' ) as f:classifier = pickle.load (f)with open( 'webapp/model/model_columns.pkl' , 'rb' ) as f:model_columns = pickle.load (f)@app.route('/')
def welcome () :return "Boston Housing Price Prediction"@app.route('/predict', methods=['POST','GET'])
def predict () :if flask.request.method == 'GET' :return "Prediction page"if flask.request.method == 'POST' :try :json_ = request.jsonprint(json_)query_ = pd.get_dummies(pd.DataFrame(json_))query = query_.reindex(columns = model_columns, fill_value= 0 )prediction = list(classifier.predict(query))return jsonify({"prediction" :str(prediction)})except :return jsonify({"trace" : traceback.format_exc()})if __name__ == "__main__" :app.run()

第4部分:在Postman中测试API

为了测试我们的API,我们将需要API客户端,并且我们将使用Postman。 下载Postman后,它应如下所示。

现在,我们将键入URL( localhost:5000 / predict )并在中键入模型所需的功能。 体内的json格式。 并将请求类型更改为POST。 我们的最终结果应如下所示。

摘要

至此,您已经开发了机器学习并使用Flask创建了API,该API可用于预测波士顿的房屋价格。

扩展这项工作

本文重点介绍为机器学习模型创建REST API和在Postman上进行测试。 此外,它可以扩展为制作Web应用程序并在Heroku云平台中进行部署。

From: https://hackernoon.com/machine-learning-w22g322x



推荐阅读
  • 本文介绍了如何使用PHP向系统日历中添加事件的方法,通过使用PHP技术可以实现自动添加事件的功能,从而实现全局通知系统和迅速记录工具的自动化。同时还提到了系统exchange自带的日历具有同步感的特点,以及使用web技术实现自动添加事件的优势。 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • CSS3选择器的使用方法详解,提高Web开发效率和精准度
    本文详细介绍了CSS3新增的选择器方法,包括属性选择器的使用。通过CSS3选择器,可以提高Web开发的效率和精准度,使得查找元素更加方便和快捷。同时,本文还对属性选择器的各种用法进行了详细解释,并给出了相应的代码示例。通过学习本文,读者可以更好地掌握CSS3选择器的使用方法,提升自己的Web开发能力。 ... [详细]
  • [译]技术公司十年经验的职场生涯回顾
    本文是一位在技术公司工作十年的职场人士对自己职业生涯的总结回顾。她的职业规划与众不同,令人深思又有趣。其中涉及到的内容有机器学习、创新创业以及引用了女性主义者在TED演讲中的部分讲义。文章表达了对职业生涯的愿望和希望,认为人类有能力不断改善自己。 ... [详细]
  • 知识图谱——机器大脑中的知识库
    本文介绍了知识图谱在机器大脑中的应用,以及搜索引擎在知识图谱方面的发展。以谷歌知识图谱为例,说明了知识图谱的智能化特点。通过搜索引擎用户可以获取更加智能化的答案,如搜索关键词"Marie Curie",会得到居里夫人的详细信息以及与之相关的历史人物。知识图谱的出现引起了搜索引擎行业的变革,不仅美国的微软必应,中国的百度、搜狗等搜索引擎公司也纷纷推出了自己的知识图谱。 ... [详细]
  • 如何用UE4制作2D游戏文档——计算篇
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了如何用UE4制作2D游戏文档——计算篇相关的知识,希望对你有一定的参考价值。 ... [详细]
  • 本文介绍了Perl的测试框架Test::Base,它是一个数据驱动的测试框架,可以自动进行单元测试,省去手工编写测试程序的麻烦。与Test::More完全兼容,使用方法简单。以plural函数为例,展示了Test::Base的使用方法。 ... [详细]
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
  • Google Play推出全新的应用内评价API,帮助开发者获取更多优质用户反馈。用户每天在Google Play上发表数百万条评论,这有助于开发者了解用户喜好和改进需求。开发者可以选择在适当的时间请求用户撰写评论,以获得全面而有用的反馈。全新应用内评价功能让用户无需返回应用详情页面即可发表评论,提升用户体验。 ... [详细]
  • flowable工作流 流程变量_信也科技工作流平台的技术实践
    1背景随着公司业务发展及内部业务流程诉求的增长,目前信息化系统不能够很好满足期望,主要体现如下:目前OA流程引擎无法满足企业特定业务流程需求,且移动端体 ... [详细]
  • 分享2款网站程序源码/主题等后门检测工具
    本文介绍了2款用于检测网站程序源码和主题中是否存在后门的工具,分别是WebShellkiller和D盾_Web查杀。WebShellkiller是一款支持webshell和暗链扫描的工具,采用多重检测引擎和智能检测模型,能够更精准地检测出已知和未知的后门文件。D盾_Web查杀则使用自行研发的代码分析引擎,能够分析更为隐藏的WebShell后门行为。 ... [详细]
  • 本文介绍了贝叶斯垃圾邮件分类的机器学习代码,代码来源于https://www.cnblogs.com/huangyc/p/10327209.html,并对代码进行了简介。朴素贝叶斯分类器训练函数包括求p(Ci)和基于词汇表的p(w|Ci)。 ... [详细]
  • cs231n Lecture 3 线性分类笔记(一)
    内容列表线性分类器简介线性评分函数阐明线性分类器损失函数多类SVMSoftmax分类器SVM和Softmax的比较基于Web的可交互线性分类器原型小结注:中文翻译 ... [详细]
  • 详解 Python 的二元算术运算,为什么说减法只是语法糖?[Python常见问题]
    原题|UnravellingbinaryarithmeticoperationsinPython作者|BrettCannon译者|豌豆花下猫(“Python猫 ... [详细]
  • KVC:Key-valuecodingisamechanismforindirectlyaccessinganobject’sattributesandrelations ... [详细]
author-avatar
用户rsvowi2rvt
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有