热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

STL源码剖析容器stl_map.h

map--------------------------------------------------------------------------------所有元素

本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie

map

--------------------------------------------------------------------------------

所有元素都会根据元素的键值自动被排序。
map的所有元素都是 pair,同时拥有实值和键值。
不可以修改元素的键值,因为它关系到 map 元素的排列规则
可以修改元素的实值,因为它不影响 map 的排列规则
map iterator 既不是一种 constant iterators , 也不是一种 mutable iterator
标准 STL map 以 RB-tree 为底层机制。

multimap 和 map 基本一样,只不过在插入的时候调用的是底层 RB-tree 的 insert_equal(),允许元素重复

图 5-20

示例:
struct ltstr
{
  bool operator()(const char* s1, const char* s2) const
  {
    return strcmp(s1, s2) <0;
  }
};


int main()
{
  map months;
  
  months["january"] = 31; //这里调用了两个函数, 先调用 map 的operator[] 函数返回键值对应实值的引用, 再调用该实值类型的 operator= 函数进行赋值
  months["february"] = 28;
  months["march"] = 31;
  months["april"] = 30;
  months["may"] = 31;
  months["june"] = 30;
  months["july"] = 31;
  months["august"] = 31;
  months["september"] = 30;
  months["october"] = 31;
  months["november"] = 30;
  months["december"] = 31;
  
  cout <<"june -> " <::iterator cur  = months.find("june");
  map::iterator prev = cur;
  map::iterator next = cur;    
  ++next;
  --prev;
  cout <<"Previous (in alphabetical order) is " <<(*prev).first <

源码:
//stl_pair.h里 pair 的定义
template 
struct pair {
  typedef T1 first_type;
  typedef T2 second_type;


  T1 first;
  T2 second;
  pair() : first(T1()), second(T2()) {}
  pair(const T1& a, const T2& b) : first(a), second(b) {}


#ifdef __STL_MEMBER_TEMPLATES
  template 
  pair(const pair& p) : first(p.first), second(p.second) {}
#endif
};

//stl_map.h 源码
#ifndef __SGI_STL_INTERNAL_MAP_H
#define __SGI_STL_INTERNAL_MAP_H


__STL_BEGIN_NAMESPACE


#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#endif


#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template , class Alloc = alloc>
#else
template 
#endif
class map {
public:


// typedefs:


  typedef Key key_type;  //键值类型
  typedef T data_type;   //数值类型
  typedef T mapped_type;
  typedef pair value_type; //元素类型(键值/实值)
  typedef Compare key_compare; //键值比较函数
    
  // functor, 其作用是调用 "元素比较函数"	
  class value_compare
    : public binary_function {
  friend class map;
  protected :
    Compare comp;
    value_compare(Compare c) : comp(c) {}
  public:
    bool operator()(const value_type& x, const value_type& y) const {
      return comp(x.first, y.first); //以 x, y 的键值调用了键值比较函数
    }
  };


private:
  typedef rb_tree, key_compare, Alloc> rep_type;
  rep_type t;  // 以红黑树表现 map
public:
  typedef typename rep_type::pointer pointer;
  typedef typename rep_type::const_pointer const_pointer;
  typedef typename rep_type::reference reference;
  typedef typename rep_type::const_reference const_reference;
  //set 的 iterator 定义为 const ,因为它不允许改变 set 里的值
  //map 的 iterator 不定义为 const,因为它虽不允许改变键值,但允许改变实值
  typedef typename rep_type::iterator iterator;
  typedef typename rep_type::const_iterator const_iterator;
  typedef typename rep_type::reverse_iterator reverse_iterator;
  typedef typename rep_type::const_reverse_iterator const_reverse_iterator;
  typedef typename rep_type::size_type size_type;
  typedef typename rep_type::difference_type difference_type;


  // allocation/deallocation


  map() : t(Compare()) {}
  explicit map(const Compare& comp) : t(comp) {}// 传递 Compare() 产生的函数对象给底层的红黑树作为初始化时设定的比较函数


  //不允许键值重复,所以只能使用 RB-tree 的 insert_unique()
#ifdef __STL_MEMBER_TEMPLATES
  template 
  map(InputIterator first, InputIterator last)
    : t(Compare()) { t.insert_unique(first, last); }


  template 
  map(InputIterator first, InputIterator last, const Compare& comp)
    : t(comp) { t.insert_unique(first, last); }
#else
  map(const value_type* first, const value_type* last)
    : t(Compare()) { t.insert_unique(first, last); }
  map(const value_type* first, const value_type* last, const Compare& comp)
    : t(comp) { t.insert_unique(first, last); }


  map(const_iterator first, const_iterator last)
    : t(Compare()) { t.insert_unique(first, last); }
  map(const_iterator first, const_iterator last, const Compare& comp)
    : t(comp) { t.insert_unique(first, last); }
#endif /* __STL_MEMBER_TEMPLATES */


  map(const map& x) : t(x.t) {}
  map& operator=(const map& x)
  {
    t = x.t;  // 调用了底层红黑树的 operator= 函数
    return *this; 
  }


   //以下所有的 map 操作行为,RB-tree 都已提供,所以 map 只要调用即可
  // accessors:


  key_compare key_comp() const { return t.key_comp(); }
  value_compare value_comp() const { return value_compare(t.key_comp()); }
  iterator begin() { return t.begin(); }
  const_iterator begin() const { return t.begin(); }
  iterator end() { return t.end(); }
  const_iterator end() const { return t.end(); }
  reverse_iterator rbegin() { return t.rbegin(); }
  const_reverse_iterator rbegin() const { return t.rbegin(); }
  reverse_iterator rend() { return t.rend(); }
  const_reverse_iterator rend() const { return t.rend(); }
  bool empty() const { return t.empty(); }
  size_type size() const { return t.size(); }
  size_type max_size() const { return t.max_size(); }
  T& operator[](const key_type& k) {
    return (*((insert(value_type(k, T()))).first)).second;
  }
  void swap(map& x) { t.swap(x.t); }


  // insert/erase


  pair insert(const value_type& x) { return t.insert_unique(x); }
  iterator insert(iterator position, const value_type& x) {
    return t.insert_unique(position, x);
  }
#ifdef __STL_MEMBER_TEMPLATES
  template 
  void insert(InputIterator first, InputIterator last) {
    t.insert_unique(first, last);
  }
#else
  void insert(const value_type* first, const value_type* last) {
    t.insert_unique(first, last);
  }
  void insert(const_iterator first, const_iterator last) {
    t.insert_unique(first, last);
  }
#endif /* __STL_MEMBER_TEMPLATES */


  void erase(iterator position) { t.erase(position); }
  size_type erase(const key_type& x) { return t.erase(x); }
  void erase(iterator first, iterator last) { t.erase(first, last); }
  void clear() { t.clear(); }


  // map operations:


  iterator find(const key_type& x) { return t.find(x); }
  const_iterator find(const key_type& x) const { return t.find(x); }
  size_type count(const key_type& x) const { return t.count(x); }
  iterator lower_bound(const key_type& x) {return t.lower_bound(x); }
  const_iterator lower_bound(const key_type& x) const {
    return t.lower_bound(x); 
  }
  iterator upper_bound(const key_type& x) {return t.upper_bound(x); }
  const_iterator upper_bound(const key_type& x) const {
    return t.upper_bound(x); 
  }
  
  pair equal_range(const key_type& x) {
    return t.equal_range(x);
  }
  pair equal_range(const key_type& x) const {
    return t.equal_range(x);
  }
  friend bool operator== __STL_NULL_TMPL_ARGS (const map&, const map&);
  friend bool operator<__STL_NULL_TMPL_ARGS (const map&, const map&);
};


template 
inline bool operator==(const map& x, 
                       const map& y) {
  return x.t == y.t;
}


template 
inline bool operator<(const map& x, 
                      const map& y) {
  return x.t 
inline void swap(map& x, 
                 map& y) {
  x.swap(y);
}


#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */


#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#endif


__STL_END_NAMESPACE


#endif /* __SGI_STL_INTERNAL_MAP_H */


// Local Variables:
// mode:C++
// End:


STL源码剖析 容器 stl_map.h,,

STL源码剖析 容器 stl_map.h


推荐阅读
  • 本文介绍了使用Java实现大数乘法的分治算法,包括输入数据的处理、普通大数乘法的结果和Karatsuba大数乘法的结果。通过改变long类型可以适应不同范围的大数乘法计算。 ... [详细]
  • HDU 2372 El Dorado(DP)的最长上升子序列长度求解方法
    本文介绍了解决HDU 2372 El Dorado问题的一种动态规划方法,通过循环k的方式求解最长上升子序列的长度。具体实现过程包括初始化dp数组、读取数列、计算最长上升子序列长度等步骤。 ... [详细]
  • 本文讨论了如何优化解决hdu 1003 java题目的动态规划方法,通过分析加法规则和最大和的性质,提出了一种优化的思路。具体方法是,当从1加到n为负时,即sum(1,n)sum(n,s),可以继续加法计算。同时,还考虑了两种特殊情况:都是负数的情况和有0的情况。最后,通过使用Scanner类来获取输入数据。 ... [详细]
  • 本文介绍了OC学习笔记中的@property和@synthesize,包括属性的定义和合成的使用方法。通过示例代码详细讲解了@property和@synthesize的作用和用法。 ... [详细]
  • 在说Hibernate映射前,我们先来了解下对象关系映射ORM。ORM的实现思想就是将关系数据库中表的数据映射成对象,以对象的形式展现。这样开发人员就可以把对数据库的操作转化为对 ... [详细]
  • 动态规划算法的基本步骤及最长递增子序列问题详解
    本文详细介绍了动态规划算法的基本步骤,包括划分阶段、选择状态、决策和状态转移方程,并以最长递增子序列问题为例进行了详细解析。动态规划算法的有效性依赖于问题本身所具有的最优子结构性质和子问题重叠性质。通过将子问题的解保存在一个表中,在以后尽可能多地利用这些子问题的解,从而提高算法的效率。 ... [详细]
  • 本文介绍了指针的概念以及在函数调用时使用指针作为参数的情况。指针存放的是变量的地址,通过指针可以修改指针所指的变量的值。然而,如果想要修改指针的指向,就需要使用指针的引用。文章还通过一个简单的示例代码解释了指针的引用的使用方法,并思考了在修改指针的指向后,取指针的输出结果。 ... [详细]
  • 猜字母游戏
    猜字母游戏猜字母游戏——设计数据结构猜字母游戏——设计程序结构猜字母游戏——实现字母生成方法猜字母游戏——实现字母检测方法猜字母游戏——实现主方法1猜字母游戏——设计数据结构1.1 ... [详细]
  • 本文介绍了lua语言中闭包的特性及其在模式匹配、日期处理、编译和模块化等方面的应用。lua中的闭包是严格遵循词法定界的第一类值,函数可以作为变量自由传递,也可以作为参数传递给其他函数。这些特性使得lua语言具有极大的灵活性,为程序开发带来了便利。 ... [详细]
  • 基于layUI的图片上传前预览功能的2种实现方式
    本文介绍了基于layUI的图片上传前预览功能的两种实现方式:一种是使用blob+FileReader,另一种是使用layUI自带的参数。通过选择文件后点击文件名,在页面中间弹窗内预览图片。其中,layUI自带的参数实现了图片预览功能。该功能依赖于layUI的上传模块,并使用了blob和FileReader来读取本地文件并获取图像的base64编码。点击文件名时会执行See()函数。摘要长度为169字。 ... [详细]
  • 本文讨论了Alink回归预测的不完善问题,指出目前主要针对Python做案例,对其他语言支持不足。同时介绍了pom.xml文件的基本结构和使用方法,以及Maven的相关知识。最后,对Alink回归预测的未来发展提出了期待。 ... [详细]
  • Mac OS 升级到11.2.2 Eclipse打不开了,报错Failed to create the Java Virtual Machine
    本文介绍了在Mac OS升级到11.2.2版本后,使用Eclipse打开时出现报错Failed to create the Java Virtual Machine的问题,并提供了解决方法。 ... [详细]
  • 本文介绍了通过ABAP开发往外网发邮件的需求,并提供了配置和代码整理的资料。其中包括了配置SAP邮件服务器的步骤和ABAP写发送邮件代码的过程。通过RZ10配置参数和icm/server_port_1的设定,可以实现向Sap User和外部邮件发送邮件的功能。希望对需要的开发人员有帮助。摘要长度:184字。 ... [详细]
  • Java验证码——kaptcha的使用配置及样式
    本文介绍了如何使用kaptcha库来实现Java验证码的配置和样式设置,包括pom.xml的依赖配置和web.xml中servlet的配置。 ... [详细]
  • 在project.properties添加#Projecttarget.targetandroid-19android.library.reference.1..Sliding ... [详细]
author-avatar
心只为你跳国
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有