热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

SLAM笔记(五)光束平差法(BundleAdjustment)

1.什么是光束平差法前边的八点法,五点法等可以求出闭式解的前提是已经知道确切的点对。但实际情况中往往存在大量的噪声,点与点不是精确地对应甚至出现一些错

1.什么是光束平差法

前边的八点法,五点法等可以求出闭式解的前提是已经知道确切的点对。但实际情况中往往存在大量的噪声,点与点不是精确地对应甚至出现一些错误匹配。 
光束平差法由Bundle Adjustment翻译得来,有两层意思: 
对场景中任意三维点P,由从每个视图所对应的的摄像机的光心发射出来并经过图像中P对应的像素后的光线,都将交于P这一点,对于所有三维点,则形成相当多的光束(bundle);实际过程中由于噪声等存在,每条光线几乎不可能汇聚与一点,因此在求解过程中,需要不断对待求信息进行调整(adjustment),来使得最终光线能交于点P。对m帧,每帧含N个特征点的目标函数如下: 
这里写图片描述 
(1) 
其中:表示受白噪声影响的估计二维点坐标,为投影函数,ruguo 如果点j出现在图i上,则,否则。 
这是一个非凸问题。 
式子(1)表示对所有点 
以上便是光束平差法目标函数的原理。由于场景中特征点往往较多,该问题是一个巨大的高维非线性优化问题。接下来,需要对上述式子进行求解,这是光束平差法的核心内容。 
针对具体应用场景,光束平差法有不同收敛方法。目前常用的方法有梯度下降法,牛顿法,高斯牛顿法,Levenber-Marquardt等方法。


2.1 一阶方法——梯度下降法

所谓一阶方法,即对问题的目标函数进行泰勒一阶展开后进行迭代求解的方法。梯度下降法是一阶方法之一。当梯度为负值时,沿着梯度方向就是函数值f变小最快的方向。梯度下降法就是让函数沿着下降最快的方向去找函数值的最小值,就像水流沿着斜率最大的方向流去。对于变量都为标量的函数,形象的描述是始终用一条直线来拟合曲线。梯度下降法迭代式子如下:

 

(2)

 

其中,ϵ表示自己设置的迭代步长,可用一维线性搜索动态确定。x表示自变量。

严格意义上,梯度下降法并不决定函数f(x)下降方向,因为它仅仅是一个余向量而非向量,只能通过最终标量的正负而非实际的向量指引函数下降方向。梯度下降法的复杂度是Ο(n),其中n为待解决问题的大小,比如矩阵E的行数。实际过程中,常常使用一维线性搜索方法来寻找合适的步长。


2.2 二阶方法——牛顿法(Newton Method)

牛顿法是二阶优化方法,即会将目标函数展开至泰勒二阶项然后进行优化求解。与梯度法相比,它们利用到了目标函数的二阶导数。形象地讲,如用牛顿法求解自变量为标量的函数时,用二次曲线来拟合最优化点时的函数曲线。

对目标函数E,其二阶泰特展开式为:

其中g为E的雅克比矩阵,H为E的海塞矩阵。

由于优化点的导数为0,即:

上式展开,易知x的迭代式子为:

由于牛顿法下降速度很快。实际中往往加上一个步长因子γϵ(0,1),来控制收敛的速度:

牛顿法是二阶收敛的,收敛速度很快。在实际应用中,向量x往往非常大(每个视图中图像处理后特征点数量可能达到万个以上),海森矩阵H将非常大,求海塞矩阵的逆的运算消耗将非常大,对于牛顿法来说,计算复杂度是O(n3)。此外,由于海塞矩阵不一定可逆。其三,对于大多数一阶优化方法,可以采用诸如图形处理器(Graphics Processing Unit)并行的方式来加速,但对于海塞矩阵求逆来说这显然无法实现。因此实际中往往出现一阶方法比二阶方法更快收敛。


2.3 拟牛顿法——高斯牛顿法(Gauss-Newton Method)

所谓拟牛顿法,就是用其他式子来模拟替代海塞矩阵。假如牛顿法中的海塞矩阵不是正定(positive definitive)的,无法求解;此外,海森矩阵H往往非常大,求海塞矩阵的逆的运算消耗也很大(对于牛顿法来说,计算复杂度是O(n3)),因此,引入用拟牛顿法来用正定矩阵代替海塞矩阵和海塞矩阵的逆。常用的拟牛顿法有高斯牛顿法(Gauss-Newton Method)。

假设最小二乘问题目标函数如下: 

其中ri(x)是对应观测值与预测值之间的残差。

仿照2.3可以得到牛顿法中的迭代式子(10)。不过其中梯度矩阵g:

海塞矩阵H:

如果对于一个近线性的优化问题,则上式第二项更趋近于0,因此舍弃第二项,上式为:

则:

也即有:

由于采用 ,计算量大大减少

应当特别指出,上式成立的条件是。在结构与运动过程中,由于一般认为到场景位置点的距离比较远的,因此短暂的移动过程中,可以认为从摄像机到场景位置点的距离是近似不变的。在距离不变,也就是一个维度固定的前提下,投影函数π是线性的。因此该近似符合应用场景,是很好的近似。


2.4 Levenberg-Marquardt方法

另外一种思路是将牛顿法和梯度法融合在一起。数学上是阻尼最小二乘法的思路,即近似只有在区间内才可靠。对于

此处μ是信赖区间半径,D为对∆进行转换的矩阵(在Levenberg的方法中,他将D设置为单位矩阵)。

即加上一个单位矩阵I的倍数和使之成为:

这种方法时保证改进后的海塞矩阵可逆且正定。从效果上,是用λ在牛顿法与梯度法之间做出权衡。当λ很小时,上式几乎等同与牛顿法式子,当λ很大时,上式等同于梯度下降法的式子。

后来,Levenberg(1944)对此方法进行了改进。他将H替换成高斯牛顿法中的拟合矩阵:

其中: (15)

但容易出现的问题是,当 很小的时候,λI可能很大。这样会极大地偏向梯度法,降低收敛速度。因此为了提高收敛速度,Marquardt 提出了一种新的自适应方法:它的迭代式子中:

因此当很小时,该方法也不会特别偏向梯度法。

在L-M方法中,采用了近似程度描述ρ

即ρ=实际下降/近似下降。当ρ太大,则减少近似范围(增大λ),当p太大,则增加近似范围(减少λ)。

因此最常使用的光束平差法模型, L-M算法计算步骤如下:

a)给定初始值; 
b)对第k次迭代,求解 
c)计算ρ 
d)若ρ>0.75(经验值),则μ=2μ(经验值,实际可视作变化迭代步长); 
若ρ<0.25&#xff08;经验值&#xff09;&#xff0c;则μ&#61;0.5μ&#xff08;经验值&#xff09;; 
e)如果ρ大于某阈值&#xff0c;则该次近似是可行的&#xff0c;回到b&#xff09;继续迭代&#xff1b;否则算法已经收敛&#xff0c;迭代结束。


2.5与高斯牛顿法相比LM算法的优缺点

高斯牛顿法的缺点是&#xff1a;


  • 可能是奇异的病态的&#xff0c;无法保证求解的增量的稳定性&#xff1b;
  • 步长可能很大从而导致无法满足高斯牛顿的一阶能大致拟合的假设 
    优点&#xff1a;
  • 下降速度比LM快

LM是信赖区域优化法的代表&#xff0c;而加上步长的高斯牛顿法是线搜索方法的代表。


3 关于光束平差法的其他问题

&#xff08;1&#xff09;初始值

光束平差法需要比较好的初始值才能比较快地收敛&#xff0c;所以光束平差法一般作为重建流水线的最后一个步骤&#xff0c;在此之前&#xff0c;需要使用多视图几何中传统的八点法&#xff0c;五点法等传统多视图几何算法先算出R,T等信息。

&#xff08;2&#xff09;步长控制

引入步长控制&#xff0c;既可以是避免收敛时步长太大而在最优点附近震荡&#xff0c;也可以加快收敛速度。加入迭代步长的原因&#xff0c;是因为 牛顿法中 下降方向 可能和真实下降方向不一致* 。*比如可能会出现几个最优点相邻比较近的情况&#xff0c;那么优化过程将在几个谷底之间跳来跳去迟迟不收敛。为了避免这种情况&#xff0c;增加收敛速率&#xff0c;加入一个迭代步长γ&#xff0c;来使迭代朝着真实下降方向走。如果在鞍点&#xff0c;在沿着海塞矩阵为负的方向迭代。实际应用中&#xff0c;可以采用每一次迭代后&#xff0c;再对γ进行一维搜索的方法来寻找合适步长。也可以采用L-M的方法&#xff0c;通过改变信任区间的方式&#xff0c;来进行步长控制。 
4.常用优化库&#xff1a; 
常用BA库&#xff1a; 
sba: A Generic Sparse Bundle Adjustment C/C&#43;&#43;

Apero/MicMac, a free open source photogrammetric software. Cecill-B licence.

Package Based on the Levenberg–Marquardt Algorithm (C, MATLAB). GPL.

cvsba: An OpenCV wrapper for sba library (C&#43;&#43;). GPL.

ssba: Simple Sparse Bundle Adjustment package based on the Levenberg–Marquardt Algorithm (C&#43;&#43;). LGPL.

OpenCV: Computer Vision library in the contrib module. BSD license.

mcba: Multi-Core Bundle Adjustment (CPU/GPU). GPL3.

libdogleg: General-purpose sparse non-linear least squares solver&#xff0c;based on Powell’s dogleg method. LGPL. 
ceres-solver: A Nonlinear Least Squares Minimizer. BSD license. 
g2o: General Graph Optimization (C&#43;&#43;) - framework with solvers for sparse graph-based non-linear error functions. LGPL.

DGAP: The program DGAP implement the photogrammetric method of bundle adjustment invented by Helmut Schmid and Duane Brown. GPL. 
工程上常用的是g2o和ceres-solver。此上列表来源不可考&#xff0c;如有侵权请联系我以删除。


推荐阅读
  • 本文讨论了在openwrt-17.01版本中,mt7628设备上初始化启动时eth0的mac地址总是随机生成的问题。每次随机生成的eth0的mac地址都会写到/sys/class/net/eth0/address目录下,而openwrt-17.01原版的SDK会根据随机生成的eth0的mac地址再生成eth0.1、eth0.2等,生成后的mac地址会保存在/etc/config/network下。 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • 本文讨论了在Windows 8上安装gvim中插件时出现的错误加载问题。作者将EasyMotion插件放在了正确的位置,但加载时却出现了错误。作者提供了下载链接和之前放置插件的位置,并列出了出现的错误信息。 ... [详细]
  • C++字符字符串处理及字符集编码方案
    本文介绍了C++中字符字符串处理的问题,并详细解释了字符集编码方案,包括UNICODE、Windows apps采用的UTF-16编码、ASCII、SBCS和DBCS编码方案。同时说明了ANSI C标准和Windows中的字符/字符串数据类型实现。文章还提到了在编译时需要定义UNICODE宏以支持unicode编码,否则将使用windows code page编译。最后,给出了相关的头文件和数据类型定义。 ... [详细]
  • 浏览器中的异常检测算法及其在深度学习中的应用
    本文介绍了在浏览器中进行异常检测的算法,包括统计学方法和机器学习方法,并探讨了异常检测在深度学习中的应用。异常检测在金融领域的信用卡欺诈、企业安全领域的非法入侵、IT运维中的设备维护时间点预测等方面具有广泛的应用。通过使用TensorFlow.js进行异常检测,可以实现对单变量和多变量异常的检测。统计学方法通过估计数据的分布概率来计算数据点的异常概率,而机器学习方法则通过训练数据来建立异常检测模型。 ... [详细]
  • 本文介绍了如何使用Express App提供静态文件,同时提到了一些不需要使用的文件,如package.json和/.ssh/known_hosts,并解释了为什么app.get('*')无法捕获所有请求以及为什么app.use(express.static(__dirname))可能会提供不需要的文件。 ... [详细]
  • 本文介绍了闭包的定义和运转机制,重点解释了闭包如何能够接触外部函数的作用域中的变量。通过词法作用域的查找规则,闭包可以访问外部函数的作用域。同时还提到了闭包的作用和影响。 ... [详细]
  • 本文介绍了解决Netty拆包粘包问题的一种方法——使用特殊结束符。在通讯过程中,客户端和服务器协商定义一个特殊的分隔符号,只要没有发送分隔符号,就代表一条数据没有结束。文章还提供了服务端的示例代码。 ... [详细]
  • 本文介绍了[从头学数学]中第101节关于比例的相关问题的研究和修炼过程。主要内容包括[机器小伟]和[工程师阿伟]一起研究比例的相关问题,并给出了一个求比例的函数scale的实现。 ... [详细]
  • 图解redis的持久化存储机制RDB和AOF的原理和优缺点
    本文通过图解的方式介绍了redis的持久化存储机制RDB和AOF的原理和优缺点。RDB是将redis内存中的数据保存为快照文件,恢复速度较快但不支持拉链式快照。AOF是将操作日志保存到磁盘,实时存储数据但恢复速度较慢。文章详细分析了两种机制的优缺点,帮助读者更好地理解redis的持久化存储策略。 ... [详细]
  • Python正则表达式学习记录及常用方法
    本文记录了学习Python正则表达式的过程,介绍了re模块的常用方法re.search,并解释了rawstring的作用。正则表达式是一种方便检查字符串匹配模式的工具,通过本文的学习可以掌握Python中使用正则表达式的基本方法。 ... [详细]
  • Android系统移植与调试之如何修改Android设备状态条上音量加减键在横竖屏切换的时候的显示于隐藏
    本文介绍了如何修改Android设备状态条上音量加减键在横竖屏切换时的显示与隐藏。通过修改系统文件system_bar.xml实现了该功能,并分享了解决思路和经验。 ... [详细]
  • 本文讨论了clone的fork与pthread_create创建线程的不同之处。进程是一个指令执行流及其执行环境,其执行环境是一个系统资源的集合。在调用系统调用fork创建一个进程时,子进程只是完全复制父进程的资源,这样得到的子进程独立于父进程,具有良好的并发性。但是二者之间的通讯需要通过专门的通讯机制,另外通过fork创建子进程系统开销很大。因此,在某些情况下,使用clone或pthread_create创建线程可能更加高效。 ... [详细]
  • 本文介绍了机器学习手册中关于日期和时区操作的重要性以及其在实际应用中的作用。文章以一个故事为背景,描述了学童们面对老先生的教导时的反应,以及上官如在这个过程中的表现。同时,文章也提到了顾慎为对上官如的恨意以及他们之间的矛盾源于早年的结局。最后,文章强调了日期和时区操作在机器学习中的重要性,并指出了其在实际应用中的作用和意义。 ... [详细]
  • 深入理解Kafka服务端请求队列中请求的处理
    本文深入分析了Kafka服务端请求队列中请求的处理过程,详细介绍了请求的封装和放入请求队列的过程,以及处理请求的线程池的创建和容量设置。通过场景分析、图示说明和源码分析,帮助读者更好地理解Kafka服务端的工作原理。 ... [详细]
author-avatar
甘文靖
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有