热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

侏儒猫鼬优化算法(IDMO)的优化算法改进及Matlab源码分享

本文介绍了优化算法改进的侏儒猫鼬优化算法(IDMO)及其Matlab源码分享。文章首先介绍了获取代码的两种方式,包括付费下载和付费订阅付费专栏。然后详细解释了侏儒猫鼬优化算法的原理和特点,以及其在集体觅食、侦察和保姆交换等方面的应用。最后提供了CSDN资源下载链接,供读者下载相关代码。

篇首语:本文由编程笔记#小编为大家整理,主要介绍了优化算法改进的侏儒猫鼬优化算法(IDMO)含Matlab源码 2314期相关的知识,希望对你有一定的参考价值。



⛄一、获取代码方式

获取代码方式1:
完整代码已上传我的资源:【优化算法】改进的侏儒猫鼬优化算法(IDMO)【含Matlab源码 2314期】
点击上面蓝色字体,直接付费下载,即可。

获取代码方式2:
付费专栏优化求解(Matlab)

备注:
点击上面蓝色字体付费专栏优化求解(Matlab),扫描上面二维码,付费299.9元订阅海神之光博客付费专栏,凭支付凭证,私信博主,可免费获得5份本博客上传CSDN资源代码(有效期为订阅日起,三天内有效);
点击CSDN资源下载链接:5份本博客上传CSDN资源代码


⛄二、 侏儒猫鼬优化算法

DMO算法是模拟侏儒猫鼬半游牧式生活的一种元启发式算法。侏儒猫鼬通常生活在一个母系社会的家族群体中,主要有觅食、侦察和保姆三种社会职能。侏儒猫鼬以集体觅食和侦察而闻名,由雌性首领引导种群进行食物源的搜寻。一旦满足保姆交换条件,即当阿尔法组未能寻找到合适的食物时,将交换阿尔法组和保姆组的成员,且阿尔法组同时进行觅食和寻找睡眠丘。
1.


推荐阅读
  • 本文介绍了C#中生成随机数的三种方法,并分析了其中存在的问题。首先介绍了使用Random类生成随机数的默认方法,但在高并发情况下可能会出现重复的情况。接着通过循环生成了一系列随机数,进一步突显了这个问题。文章指出,随机数生成在任何编程语言中都是必备的功能,但Random类生成的随机数并不可靠。最后,提出了需要寻找其他可靠的随机数生成方法的建议。 ... [详细]
  • [译]技术公司十年经验的职场生涯回顾
    本文是一位在技术公司工作十年的职场人士对自己职业生涯的总结回顾。她的职业规划与众不同,令人深思又有趣。其中涉及到的内容有机器学习、创新创业以及引用了女性主义者在TED演讲中的部分讲义。文章表达了对职业生涯的愿望和希望,认为人类有能力不断改善自己。 ... [详细]
  • 本文介绍了高校天文共享平台的开发过程中的思考和规划。该平台旨在为高校学生提供天象预报、科普知识、观测活动、图片分享等功能。文章分析了项目的技术栈选择、网站前端布局、业务流程、数据库结构等方面,并总结了项目存在的问题,如前后端未分离、代码混乱等。作者表示希望通过记录和规划,能够理清思路,进一步完善该平台。 ... [详细]
  • 本文讨论了在手机移动端如何使用HTML5和JavaScript实现视频上传并压缩视频质量,或者降低手机摄像头拍摄质量的问题。作者指出HTML5和JavaScript无法直接压缩视频,只能通过将视频传送到服务器端由后端进行压缩。对于控制相机拍摄质量,只有使用JAVA编写Android客户端才能实现压缩。此外,作者还解释了在交作业时使用zip格式压缩包导致CSS文件和图片音乐丢失的原因,并提供了解决方法。最后,作者还介绍了一个用于处理图片的类,可以实现图片剪裁处理和生成缩略图的功能。 ... [详细]
  • 一、Hadoop来历Hadoop的思想来源于Google在做搜索引擎的时候出现一个很大的问题就是这么多网页我如何才能以最快的速度来搜索到,由于这个问题Google发明 ... [详细]
  • 本文介绍了lua语言中闭包的特性及其在模式匹配、日期处理、编译和模块化等方面的应用。lua中的闭包是严格遵循词法定界的第一类值,函数可以作为变量自由传递,也可以作为参数传递给其他函数。这些特性使得lua语言具有极大的灵活性,为程序开发带来了便利。 ... [详细]
  • 本文介绍了Python高级网络编程及TCP/IP协议簇的OSI七层模型。首先简单介绍了七层模型的各层及其封装解封装过程。然后讨论了程序开发中涉及到的网络通信内容,主要包括TCP协议、UDP协议和IPV4协议。最后还介绍了socket编程、聊天socket实现、远程执行命令、上传文件、socketserver及其源码分析等相关内容。 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • 图解redis的持久化存储机制RDB和AOF的原理和优缺点
    本文通过图解的方式介绍了redis的持久化存储机制RDB和AOF的原理和优缺点。RDB是将redis内存中的数据保存为快照文件,恢复速度较快但不支持拉链式快照。AOF是将操作日志保存到磁盘,实时存储数据但恢复速度较慢。文章详细分析了两种机制的优缺点,帮助读者更好地理解redis的持久化存储策略。 ... [详细]
  • 解决Cydia数据库错误:could not open file /var/lib/dpkg/status 的方法
    本文介绍了解决iOS系统中Cydia数据库错误的方法。通过使用苹果电脑上的Impactor工具和NewTerm软件,以及ifunbox工具和终端命令,可以解决该问题。具体步骤包括下载所需工具、连接手机到电脑、安装NewTerm、下载ifunbox并注册Dropbox账号、下载并解压lib.zip文件、将lib文件夹拖入Books文件夹中,并将lib文件夹拷贝到/var/目录下。以上方法适用于已经越狱且出现Cydia数据库错误的iPhone手机。 ... [详细]
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
  • 计算机存储系统的层次结构及其优势
    本文介绍了计算机存储系统的层次结构,包括高速缓存、主存储器和辅助存储器三个层次。通过分层存储数据可以提高程序的执行效率。计算机存储系统的层次结构将各种不同存储容量、存取速度和价格的存储器有机组合成整体,形成可寻址存储空间比主存储器空间大得多的存储整体。由于辅助存储器容量大、价格低,使得整体存储系统的平均价格降低。同时,高速缓存的存取速度可以和CPU的工作速度相匹配,进一步提高程序执行效率。 ... [详细]
  • 《数据结构》学习笔记3——串匹配算法性能评估
    本文主要讨论串匹配算法的性能评估,包括模式匹配、字符种类数量、算法复杂度等内容。通过借助C++中的头文件和库,可以实现对串的匹配操作。其中蛮力算法的复杂度为O(m*n),通过随机取出长度为m的子串作为模式P,在文本T中进行匹配,统计平均复杂度。对于成功和失败的匹配分别进行测试,分析其平均复杂度。详情请参考相关学习资源。 ... [详细]
  • 动态规划算法的基本步骤及最长递增子序列问题详解
    本文详细介绍了动态规划算法的基本步骤,包括划分阶段、选择状态、决策和状态转移方程,并以最长递增子序列问题为例进行了详细解析。动态规划算法的有效性依赖于问题本身所具有的最优子结构性质和子问题重叠性质。通过将子问题的解保存在一个表中,在以后尽可能多地利用这些子问题的解,从而提高算法的效率。 ... [详细]
  • github上_idea上传本地项目到github上(图解)
    本文由编程笔记#小编为大家整理,主要介绍了idea上传本地项目到github上(图解)相关的知识,希望对你有一定的参考价值。 ... [详细]
author-avatar
小刺猬HF
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有