热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python实现各种排序算法的代码示例总结

这篇文章主要介绍了Python实现各种排序算法的代码示例总结,其实Python是非常好的算法入门学习时的配套高级语言,需要的朋友可以参考下

在Python实践中,我们往往遇到排序问题,比如在对搜索结果打分的排序(没有排序就没有Google等搜索引擎的存在),当然,这样的例子数不胜数。《数据结构》也会花大量篇幅讲解排序。之前一段时间,由于需要,我复习了一下排序算法,并用Python实现了各种排序算法,放在这里作为参考。

最简单的排序有三种:插入排序,选择排序和冒泡排序。这三种排序比较简单,它们的平均时间复杂度均为O(n^2),在这里对原理就不加赘述了。贴出来源代码。

插入排序:

def insertion_sort(sort_list):
  iter_len = len(sort_list)
  if iter_len <2:
    return sort_list
  for i in range(1, iter_len):
    key = sort_list[i]
    j = i - 1
    while j >= 0 and sort_list[j] > key:
      sort_list[j+1] = sort_list[j]
      j -= 1
    sort_list[j+1] = key
  return sort_list

冒泡排序:

def bubble_sort(sort_list):
  iter_len = len(sort_list)
  if iter_len <2:
    return sort_list
  for i in range(iter_len-1):
    for j in range(iter_len-i-1):
      if sort_list[j] > sort_list[j+1]:
        sort_list[j], sort_list[j+1] = sort_list[j+1], sort_list[j]
  return sort_list

选择排序:

def selection_sort(sort_list):
  iter_len = len(sort_list)
  if iter_len <2:
    return sort_list
  for i in range(iter_len-1):
    smallest = sort_list[i]
    location = i
    for j in range(i, iter_len):
      if sort_list[j] 

这里我们可以看到这样的句子:

sort_list[i], sort_list[location] = sort_list[location], sort_list[i]
不了解Python的同学可能会觉得奇怪,没错,这是交换两个数的做法,通常在其他语言中如果要交换a与b的值,常常需要一个中间变量temp,首先把a赋给temp,然后把b赋给a,最后再把temp赋给b。但是在python中你就可以这么写:a, b = b, a,其实这是因为赋值符号的左右两边都是元组(这里需要强调的是,在python中,元组其实是由逗号“,”来界定的,而不是括号)。

平均时间复杂度为O(nlogn)的算法有:归并排序,堆排序和快速排序。

归并排序。对于一个子序列,分成两份,比较两份的第一个元素,小者弹出,然后重复这个过程。对于待排序列,以中间值分成左右两个序列,然后对于各子序列再递归调用。源代码如下,由于有工具函数,所以写成了callable的类:

class merge_sort(object):
  def _merge(self, alist, p, q, r):
    left = alist[p:q+1]
    right = alist[q+1:r+1]
    for i in range(p, r+1):
      if len(left) > 0 and len(right) > 0:
        if left[0] <= right[0]:
          alist[i] = left.pop(0)
        else:
          alist[i] = right.pop(0)
      elif len(right) == 0:
        alist[i] = left.pop(0)
      elif len(left) == 0:
        alist[i] = right.pop(0)

  def _merge_sort(self, alist, p, r):
    if p

堆排序,是建立在数据结构——堆上的。关于堆的基本概念、以及堆的存储方式这里不作介绍。这里用一个列表来存储堆(和用数组存储类似),对于处在i位置的元素,2i+1位置上的是其左孩子,2i+2是其右孩子,类似得可以得出该元素的父元素。

首先我们写一个函数,对于某个子树,从根节点开始,如果其值小于子节点的值,就交换其值。用此方法来递归其子树。接着,我们对于堆的所有非叶节点,自下而上调用先前所述的函数,得到一个树,对于每个节点(非叶节点),它都大于其子节点。(其实这是建立最大堆的过程)在完成之后,将列表的头元素和尾元素调换顺序,这样列表的最后一位就是最大的数,接着在对列表的0到n-1部分再调用以上建立最大堆的过程。最后得到堆排序完成的列表。以下是源代码:

class heap_sort(object):
  def _left(self, i):
    return 2*i+1
  def _right(self, i):
    return 2*i+2
  def _parent(self, i):
    if i%2==1:
      return int(i/2)
    else:
      return i/2-1

  def _max_heapify(self, alist, i, heap_size=None):
    length = len(alist)

    if heap_size is None:
      heap_size = length

    l = self._left(i)
    r = self._right(i)

    if l  alist[i]:
      largest = l
    else:
      largest = i
    if r  alist[largest]:
      largest = r

    if largest!=i:
      alist[i], alist[largest] = alist[largest], alist[i]
      self._max_heapify(alist, largest, heap_size)

  def _build_max_heap(self, alist):
    roop_end = int(len(alist)/2)
    for i in range(0, roop_end)[::-1]:
      self._max_heapify(alist, i)

  def __call__(self, sort_list):
    self._build_max_heap(sort_list)
    heap_size = len(sort_list)
    for i in range(1, len(sort_list))[::-1]:
      sort_list[0], sort_list[i] = sort_list[i], sort_list[0]
      heap_size -= 1
      self._max_heapify(sort_list, 0, heap_size)

    return sort_list

最后一种要说明的交换排序算法(以上所有算法都为交换排序,原因是都需要通过两两比较交换顺序)自然就是经典的快速排序。

先来讲解一下原理。首先要用到的是分区工具函数(partition),对于给定的列表(数组),我们首先选择基准元素(这里我选择最后一个元素),通过比较,最后使得该元素的位置,使得这个运行结束的新列表(就地运行)所有在基准元素左边的数都小于基准元素,而右边的数都大于它。然后我们对于待排的列表,用分区函数求得位置,将列表分为左右两个列表(理想情况下),然后对其递归调用分区函数,直到子序列的长度小于等于1。

下面是快速排序的源代码:

class quick_sort(object):
  def _partition(self, alist, p, r):
    i = p-1
    x = alist[r]
    for j in range(p, r):
      if alist[j] <= x:
        i += 1
        alist[i], alist[j] = alist[j], alist[i]
    alist[i+1], alist[r] = alist[r], alist[i+1]
    return i+1

  def _quicksort(self, alist, p, r):
    if p 

细心的朋友在这里可能会发现一个问题,如果待排序列正好是顺序的时候,整个的递归将会达到最大递归深度(序列的长度)。而实际上在操作的时候,当列表长度大于1000(理论值)的时候,程序会中断,报超出最大递归深度的错误(maximum recursion depth exceeded)。在查过资料后我们知道,Python在默认情况下,最大递归深度为1000(理论值,其实真实情况下,只有995左右,各个系统这个值的大小也不同)。这个问题有两种解决方案,1)重新设置最大递归深度,采用以下方法设置:

import sys
sys.setrecursionlimit(99999)

2)第二种方法就是采用另外一个版本的分区函数,称为随机化分区函数。由于之前我们的选择都是子序列的最后一个数,因此对于特殊情况的健壮性就差了许多。现在我们随机从子序列选择基准元素,这样可以减少对特殊情况的差错率。新的randomize partition函数如下:

def _randomized_partition(self, alist, p, r):
  i = random.randint(p, r)
  alist[i], alist[r] = alist[r], alist[i]
  return self._partition(alist, p, r)

完整的randomize_quick_sort的代码如下(这里我直接继承之前的quick_sort类):

import random
class randomized_quick_sort(quick_sort):
  def _randomized_partition(self, alist, p, r):
    i = random.randint(p, r)
    alist[i], alist[r] = alist[r], alist[i]
    return self._partition(alist, p, r)

  def _quicksort(self, alist, p, r):
    if p

关于快速排序的讨论还没有结束。我们都知道,Python是一门很优雅的语言,而Python写出来的代码是相当简洁而可读性极强的。这里就介绍快排的另一种写法,只需要三行就能够搞定,但是又不失阅读性。(当然,要看懂是需要一定的Python基础的)代码如下:

def quick_sort_2(sort_list):
  if len(sort_list)<=1:
    return sort_list
  return quick_sort_2([lt for lt in sort_list[1:] if lt=sort_list[0]])

怎么样看懂了吧,这段代码出自《Python cookbook 第二版》,这种写法展示出了列表推导的强大表现力。

对于比较排序算法,我们知道,可以把所有可能出现的情况画成二叉树(决策树模型),对于n个长度的列表,其决策树的高度为h,叶子节点就是这个列表乱序的全部可能性为n!,而我们知道,这个二叉树的叶子节点不会超过2^h,所以有2^h>=n!,取对数,可以知道,h>=logn!,这个是近似于O(nlogn)。也就是说比较排序算法的最好性能就是O(nlgn)。

那有没有线性时间,也就是时间复杂度为O(n)的算法呢?答案是肯定的。不过由于排序在实际应用中算法其实是非常复杂的。这里只是讨论在一些特殊情形下的线性排序算法。特殊情形下的线性排序算法主要有计数排序,桶排序和基数排序。这里只简单说一下计数排序。

计数排序是建立在对待排序列这样的假设下:假设待排序列都是正整数。首先,声明一个新序列list2,序列的长度为待排序列中的最大数。遍历待排序列,对每个数,设其大小为i,list2[i]++,这相当于计数大小为i的数出现的次数。然后,申请一个list,长度等于待排序列的长度(这个是输出序列,由此可以看出计数排序不是就地排序算法),倒序遍历待排序列(倒排的原因是为了保持排序的稳定性,及大小相同的两个数在排完序后位置不会调换),假设当前数大小为i,list[list2[i]-1] = i,同时list2[i]自减1(这是因为这个大小的数已经输出一个,所以大小要自减)。于是,计数排序的源代码如下。

class counting_sort(object):
  def _counting_sort(self, alist, k):
    alist3 = [0 for i in range(k)]
    alist2 = [0 for i in range(len(alist))]
    for j in alist:
      alist3[j] += 1
    for i in range(1, k):
      alist3[i] = alist3[i-1] + alist3[i]
    for l in alist[::-1]:
      alist2[alist3[l]-1] = l
      alist3[l] -= 1
    return alist2

  def __call__(self, sort_list, k=None):
    if k is None:
      import heapq
      k = heapq.nlargest(1, sort_list)[0] + 1
    return self._counting_sort(sort_list, k)

各种排序算法介绍完(以上的代码都通过了我写的单元测试),我们再回到Python这个主题上来。其实Python从最早的版本开始,多次更换内置的排序算法。从开始使用C库提供的qsort例程(这个方法有相当多的问题),到后来自己开始实现自己的算法,包括2.3版本以前的抽样排序和折半插入排序的混合体,以及最新的适应性的排序算法,代码也由C语言的800行到1200行,以至于更多。从这些我们可以知道,在实际生产环境中,使用经典的排序算法是不切实际的,它们仅仅能做学习研究之用。而在实践中,更推荐的做法应该遵循以下两点:

当需要排序的时候,尽量设法使用内建Python列表的sort方法。
当需要搜索的时候,尽量设法使用内建的字典。
我写了测试函数,来比较内置的sort方法相比于以上方法的优越性。测试序列长度为5000,每个函数测试3次取平均值,可以得到以下的测试结果:

20151211165042473.png (530×165)

可以看出,Python内置函数是有很大的优势的。因此在实际应用时,我们应该尽量使用内置的sort方法。

由此,我们引出另外一个问题。怎么样判断一个序列中是否有重复元素,如果有返回True,没有返回False。有人会说,这不很简单么,直接写两个嵌套的迭代,遍历就是了。代码写下来应该是这样。

def normal_find_same(alist):
  length = len(alist)
  for i in range(length):
    for j in range(i+1, length):
      if alist[i] == alist[j]:
        return True
  return False

这种方法的代价是非常大的(平均时间复杂度是O(n^2),当列表中没有重复元素的时候会达到最坏情况),由之前的经验,我们可以想到,利用内置sort方法极快的经验,我们可以这么做:首先将列表排序,然后遍历一遍,看是否有重复元素。包括完整的测试代码如下:

import time
import random

def record_time(func, alist):
  start = time.time()
  func(alist)
  end = time.time()

  return end - start

def quick_find_same(alist):
  alist.sort()
  length = len(alist)
  for i in range(length-1):
    if alist[i] == alist[i+1]:
      return True
  return False

if __name__ == "__main__":
  methods = (normal_find_same, quick_find_same)
  alist = range(5000)
  random.shuffle(alist)

  for m in methods:
    print 'The method %s spends %s' % (m.__name__, record_time(m, alist))

运行以后我的数据是,对于5000长度,没有重复元素的列表,普通方法需要花费大约1.205秒,而快速查找法花费只有0.003秒。这就是排序在实际应用中的一个例子。


推荐阅读
  • 学习SLAM的女生,很酷
    本文介绍了学习SLAM的女生的故事,她们选择SLAM作为研究方向,面临各种学习挑战,但坚持不懈,最终获得成功。文章鼓励未来想走科研道路的女生勇敢追求自己的梦想,同时提到了一位正在英国攻读硕士学位的女生与SLAM结缘的经历。 ... [详细]
  • 2018年人工智能大数据的爆发,学Java还是Python?
    本文介绍了2018年人工智能大数据的爆发以及学习Java和Python的相关知识。在人工智能和大数据时代,Java和Python这两门编程语言都很优秀且火爆。选择学习哪门语言要根据个人兴趣爱好来决定。Python是一门拥有简洁语法的高级编程语言,容易上手。其特色之一是强制使用空白符作为语句缩进,使得新手可以快速上手。目前,Python在人工智能领域有着广泛的应用。如果对Java、Python或大数据感兴趣,欢迎加入qq群458345782。 ... [详细]
  • 一、Hadoop来历Hadoop的思想来源于Google在做搜索引擎的时候出现一个很大的问题就是这么多网页我如何才能以最快的速度来搜索到,由于这个问题Google发明 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • 云原生边缘计算之KubeEdge简介及功能特点
    本文介绍了云原生边缘计算中的KubeEdge系统,该系统是一个开源系统,用于将容器化应用程序编排功能扩展到Edge的主机。它基于Kubernetes构建,并为网络应用程序提供基础架构支持。同时,KubeEdge具有离线模式、基于Kubernetes的节点、群集、应用程序和设备管理、资源优化等特点。此外,KubeEdge还支持跨平台工作,在私有、公共和混合云中都可以运行。同时,KubeEdge还提供数据管理和数据分析管道引擎的支持。最后,本文还介绍了KubeEdge系统生成证书的方法。 ... [详细]
  • CSS3选择器的使用方法详解,提高Web开发效率和精准度
    本文详细介绍了CSS3新增的选择器方法,包括属性选择器的使用。通过CSS3选择器,可以提高Web开发的效率和精准度,使得查找元素更加方便和快捷。同时,本文还对属性选择器的各种用法进行了详细解释,并给出了相应的代码示例。通过学习本文,读者可以更好地掌握CSS3选择器的使用方法,提升自己的Web开发能力。 ... [详细]
  • “你永远都不知道明天和‘公司的意外’哪个先来。”疫情期间,这是我们最战战兢兢的心情。但是显然,有些人体会不了。这份行业数据,让笔者“柠檬” ... [详细]
  • 生成对抗式网络GAN及其衍生CGAN、DCGAN、WGAN、LSGAN、BEGAN介绍
    一、GAN原理介绍学习GAN的第一篇论文当然由是IanGoodfellow于2014年发表的GenerativeAdversarialNetworks(论文下载链接arxiv:[h ... [详细]
  • [译]技术公司十年经验的职场生涯回顾
    本文是一位在技术公司工作十年的职场人士对自己职业生涯的总结回顾。她的职业规划与众不同,令人深思又有趣。其中涉及到的内容有机器学习、创新创业以及引用了女性主义者在TED演讲中的部分讲义。文章表达了对职业生涯的愿望和希望,认为人类有能力不断改善自己。 ... [详细]
  • 无损压缩算法专题——LZSS算法实现
    本文介绍了基于无损压缩算法专题的LZSS算法实现。通过Python和C两种语言的代码实现了对任意文件的压缩和解压功能。详细介绍了LZSS算法的原理和实现过程,以及代码中的注释。 ... [详细]
  • 解决Cydia数据库错误:could not open file /var/lib/dpkg/status 的方法
    本文介绍了解决iOS系统中Cydia数据库错误的方法。通过使用苹果电脑上的Impactor工具和NewTerm软件,以及ifunbox工具和终端命令,可以解决该问题。具体步骤包括下载所需工具、连接手机到电脑、安装NewTerm、下载ifunbox并注册Dropbox账号、下载并解压lib.zip文件、将lib文件夹拖入Books文件夹中,并将lib文件夹拷贝到/var/目录下。以上方法适用于已经越狱且出现Cydia数据库错误的iPhone手机。 ... [详细]
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
  • 计算机存储系统的层次结构及其优势
    本文介绍了计算机存储系统的层次结构,包括高速缓存、主存储器和辅助存储器三个层次。通过分层存储数据可以提高程序的执行效率。计算机存储系统的层次结构将各种不同存储容量、存取速度和价格的存储器有机组合成整体,形成可寻址存储空间比主存储器空间大得多的存储整体。由于辅助存储器容量大、价格低,使得整体存储系统的平均价格降低。同时,高速缓存的存取速度可以和CPU的工作速度相匹配,进一步提高程序执行效率。 ... [详细]
  • 31.项目部署
    目录1一些概念1.1项目部署1.2WSGI1.3uWSGI1.4Nginx2安装环境与迁移项目2.1项目内容2.2项目配置2.2.1DEBUG2.2.2STAT ... [详细]
  • 这篇文章主要介绍了Python拼接字符串的七种方式,包括使用%、format()、join()、f-string等方法。每种方法都有其特点和限制,通过本文的介绍可以帮助读者更好地理解和运用字符串拼接的技巧。 ... [详细]
author-avatar
Healthcen健康
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有